Do you want to publish a course? Click here

Magnetic imaging and statistical analysis of the metamagnetic phase transition of FeRh with electron spins in diamond

107   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic imaging based on nitrogen-vacancy (NV) centers in diamond has emerged as a powerful tool for probing magnetic phenomena in fields ranging from biology to physics. A key strength of NV sensing is its local-probe nature, enabling high-resolution spatial images of magnetic stray fields emanating from a sample. However, this local character can also form a drawback for analysing the global properties of a system, such as a phase transition temperature. Here, we address this challenge by using statistical analyses of magnetic-field maps to characterize the first-order temperature-driven metamagnetic phase transition from the antiferromagnetic to the ferromagnetic state in FeRh. After imaging the phase transition and identifying the regimes of nucleation, growth, and coalescence of ferromagnetic domains, we statistically characterize the spatial magnetic-field maps to extract the transition temperature and thermal hysteresis width. By analysing the spatial correlations of the maps and their dependence on an external magnetic field, we investigate the magnetocrystalline anisotropy and detect a reorientation of domain walls across the phase transition. The employed statistical approach can be extended to the study of other magnetic phenomena with NV magnetometry or other sensing techniques.



rate research

Read More

The phase coexistence present through a first-order phase transition means there will be finite regions between the two phases where the structure of the system will vary from one phase to the other, known as a phase boundary wall. This region is said to play an important but unknown role in the dynamics of the first-order phase transitions. Here, by using both x-ray photon correlation spectroscopy and magnetometry techniques to measure the temporal isothermal development at various points through the thermally activated first-order metamagnetic phase transition present in the near-equiatomic FeRh alloy, we are able to isolate the dynamic behavior of the domain walls in this system. These investigations reveal that relaxation behavior of the domain walls changes when phase coexistence is introduced into the system and that the domain wall dynamics is different to the macroscale behavior. We attribute this to the effect of the exchange coupling between regions of either magnetic phase changing the dynamic properties of domain walls relative to bulk regions of either phase. We also believe this behavior comes from the influence of the phase boundary wall on other magnetic objects in the system.
50 - M.E. Gruner , E. Hoffmann , 2002
Based on ab initio total energy calculations we show that two magnetic states of rhodium atoms together with competing ferromagnetic and antiferromagnetic exchange interactions are responsible for a temperature induced metamagnetic phase transition, which experimentally is observed for stoichiometric alpha-FeRh. A first-principle spin-based model allows to reproduce this first-order metamagnetic transition by means of Monte Carlo simulations. Further inclusion of spacial variation of exchange parameters leads to a realistic description of the experimental magneto-volume effects in alpha-FeRh.
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRh films, the effect is dramatically enhanced at the mesoscale. The asymmetry in the transitions is independent of applied magnetic fields and the activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. The collective behavior upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order magnetic phase transitions.
Understanding the mechanisms behind high-$T_{c}$ Type-II superconductors (SC) is still an open task in condensed matter physics. One way to gain further insight into the microscopic mechanisms leading to superconductivity is to study the magnetic properties of the SC in detail, for example by studying the properties of vortices and their dynamics. In this work we describe a new method of wide-field imaging magnetometry using nitrogen-vacancy (NV) centers in diamond to image vortices in an yttrium barium copper oxide (YBCO) thin film. We demonstrate quantitative determination of the magnetic field strength of the vortex stray field, the observation of vortex patterns for different cooling fields and direct observation of vortex pinning in our disordered YBCO film. This method opens prospects for imaging of the magnetic-stray fields of vortices at frequencies from DC to several megahertz within a wide range of temperatures which allows for the study of both high-$T_{C}$ and low-$T_{C}$ SCs. The wide temperature range allowed by NV center magnetometry also makes our approach applicable for the study of phenomena like island superconductivity at elevated temperatures (e.g. in metal nano-clusters).
We present a solid state magnetic field imaging technique using a two dimensional array of spins in diamond. The magnetic sensing spin array is made of nitrogen-vacancy (NV) centers created at shallow depths. Their optical response is used for measuring external magnetic fields in close proximity. Optically detected magnetic resonance (ODMR) is readout from a 60x60 $mu$m field of view in a multiplexed manner using a CCD camera. We experimentally demonstrate full two-dimensional vector imaging of the magnetic field produced by a pair of current carrying micro-wires. The presented widefield NV magnetometer offers in addition to its high magnetic sensitivity of 20 nT/$sqrt{Hz}$ and vector reconstruction, an unprecedented spatio-temporal resolution and functionality at room temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا