We study the computational complexity of (deterministic or randomized) algorithms based on point samples for approximating or integrating functions that can be well approximated by neural networks. Such algorithms (most prominently stochastic gradient descent and its variants) are used extensively in the field of deep learning. One of the most important problems in this field concerns the question of whether it is possible to realize theoretically provable neural network approximation rates by such algorithms. We answer this question in the negative by proving hardness results for the problems of approximation and integration on a novel class of neural network approximation spaces. In particular, our results confirm a conjectured and empirically observed theory-to-practice gap in deep learning. We complement our hardness results by showing that approximation rates of a comparable order of convergence are (at least theoretically) achievable.
This paper addresses the growing need to process non-Euclidean data, by introducing a geometric deep learning (GDL) framework for building universal feedforward-type models compatible with differentiable manifold geometries. We show that our GDL models can approximate any continuous target function uniformly on compacts of a controlled maximum diameter. We obtain curvature dependant lower-bounds on this maximum diameter and upper-bounds on the depth of our approximating GDL models. Conversely, we find that there is always a continuous function between any two non-degenerate compact manifolds that any locally-defined GDL model cannot uniformly approximate. Our last main result identifies data-dependent conditions guaranteeing that the GDL model implementing our approximation breaks the curse of dimensionality. We find that any real-world (i.e. finite) dataset always satisfies our condition and, conversely, any dataset satisfies our requirement if the target function is smooth. As applications, we confirm the universal approximation capabilities of the following GDL models: Ganea et al. (2018)s hyperbolic feedforward networks, the architecture implementing Krishnan et al. (2015)s deep Kalman-Filter, and deep softmax classifiers. We build universal extensions/variants of: the SPD-matrix regressor of Meyer et al. (2011), and Fletcher et al. (2009)s Procrustean regressor. In the Euclidean setting, our results imply a quantitative version of Kidger and Lyons (2020)s approximation theorem and a data-dependent version of Yarotsky and Zhevnerchuk (2020)s uncursed approximation rates.
Progressive Neural Network Learning is a class of algorithms that incrementally construct the networks topology and optimize its parameters based on the training data. While this approach exempts the users from the manual task of designing and validating multiple network topologies, it often requires an enormous number of computations. In this paper, we propose to speed up this process by exploiting subsets of training data at each incremental training step. Three different sampling strategies for selecting the training samples according to different criteria are proposed and evaluated. We also propose to perform online hyperparameter selection during the network progression, which further reduces the overall training time. Experimental results in object, scene and face recognition problems demonstrate that the proposed approach speeds up the optimization procedure considerably while operating on par with the baseline approach exploiting the entire training set throughout the training process.
Complex networks are often either too large for full exploration, partially accessible, or partially observed. Downstream learning tasks on these incomplete networks can produce low quality results. In addition, reducing the incompleteness of the network can be costly and nontrivial. As a result, network discovery algorithms optimized for specific downstream learning tasks given resource collection constraints are of great interest. In this paper, we formulate the task-specific network discovery problem in an incomplete network setting as a sequential decision making problem. Our downstream task is selective harvesting, the optimal collection of vertices with a particular attribute. We propose a framework, called Network Actor Critic (NAC), which learns a policy and notion of future reward in an offline setting via a deep reinforcement learning algorithm. The NAC paradigm utilizes a task-specific network embedding to reduce the state space complexity. A detailed comparative analysis of popular network embeddings is presented with respect to their role in supporting offline planning. Furthermore, a quantitative study is presented on several synthetic and real benchmarks using NAC and several baselines. We show that offline models of reward and network discovery policies lead to significantly improved performance when compared to competitive online discovery algorithms. Finally, we outline learning regimes where planning is critical in addressing sparse and changing reward signals.
We study the expressive power of deep ReLU neural networks for approximating functions in dilated shift-invariant spaces, which are widely used in signal processing, image processing, communications and so on. Approximation error bounds are estimated with respect to the width and depth of neural networks. The network construction is based on the bit extraction and data-fitting capacity of deep neural networks. As applications of our main results, the approximation rates of classical function spaces such as Sobolev spaces and Besov spaces are obtained. We also give lower bounds of the $L^p (1le p le infty)$ approximation error for Sobolev spaces, which show that our construction of neural network is asymptotically optimal up to a logarithmic factor.
Despite recent advances in its theoretical understanding, there still remains a significant gap in the ability of existing PAC-Bayesian theories on meta-learning to explain performance improvements in the few-shot learning setting, where the number of training examples in the target tasks is severely limited. This gap originates from an assumption in the existing theories which supposes that the number of training examples in the observed tasks and the number of training examples in the target tasks follow the same distribution, an assumption that rarely holds in practice. By relaxing this assumption, we develop two PAC-Bayesian bounds tailored for the few-shot learning setting and show that two existing meta-learning algorithms (MAML and Reptile) can be derived from our bounds, thereby bridging the gap between practice and PAC-Bayesian theories. Furthermore, we derive a new computationally-efficient PACMAML algorithm, and show it outperforms existing meta-learning algorithms on several few-shot benchmark datasets.
Philipp Grohs
,Felix Voigtlaender
.
(2021)
.
"Proof of the Theory-to-Practice Gap in Deep Learning via Sampling Complexity bounds for Neural Network Approximation Spaces"
.
Felix Voigtlaender
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا