Exponentially selective molecular sieving through angstrom pores


Abstract in English

Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme selectivity combined with high flow rates. Here we study gas transport through individual graphene pores with an effective diameter of about 2 angstroms, or about one missing carbon ring, which are created reproducibly by a short-time exposure to a low-kV electron beam. Helium and hydrogen permeate easily through these pores whereas larger molecules such as xenon and methane are blocked. Permeating gases experience activation barriers that increase quadratically with the kinetic diameter, and the transport process crucially involves surface adsorption. Our results reveal underlying mechanisms for the long sought-after exponential selectivity and suggest the bounds on possible performance of porous two-dimensional membranes.

Download