Do you want to publish a course? Click here

Warm ISM in the Sgr A Complex. II. The [C/N] abundance ratio traced by [CII] 158 um and [NII] 205 um observations toward the Arched Filaments at the Galactic center

129   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. We aim to investigate the I([CII]) versus I([NII]) integrated intensity behavior in the AF region in order to assess the [CII] emission contribution from the H II region, which is traced by [NII] line observations, and PDR components in the high-metallicity environment of the GC. Methods. We used [CII] 158 um and [NII] 205 um fine-structure line observations of the AF in the literature to compare their observational integrated intensity distribution to semi-theoretical predictions for the contribution of H II regions and adjacent PDRs to the observed [CII] emission. We explored variations in the [C/N] elemental abundance ratio to explain the overall behavior of the observed relationship. Based on our models, the H II region and PDR contributions to the observed [CII] emission is calculated for a few positions within and near to the AF. Estimates for the [C/N] abundance ratio and [N/H] nitrogen elemental abundance in the AF can then be derived. Results. The behavior of the I([CII]) versus I([NII]) relationship in the AF can be explained by model results satisfying 0.84 < [C/N]_AF < 1.41, with model metallicities ranging from 1 Z to 2 Z, hydrogen volume density log n(H) = 3.5, and ionization parameters log U from -1 to -2. A least-squares fit to the model data points yields log I([CII]) = 1.068log I([NII]) + 0.645 to predict the [CII] emission arising from the H II regions in the AF. The fraction of the total observed [CII] emission arising from within PDRs varies between ~ 0.20 and ~ 0.75. Our results yield average values for the carbon-to-nitrogen ratio and nitrogen elemental abundances of [C/N]_AF = 1.13 +/- 0.09 and [N/H]_AF = 6.21x10^4 for the AF, respectively. They are a factor of ~ 0.4 smaller and ~ 7.5 larger than their corresponding Galactic disk values.



rate research

Read More

We report the first detection of the 205 um 3P1 - 3P0 [NII] line from a ground-based observatory using a direct detection spectrometer. The line was detected from the Carina star formation region using the South Pole Imaging Fabry-Perot Interferometer (SPIFI) on the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) at South Pole. The [NII] 205 um line strength indicates a low-density (n ~ 32 cm^-3 ionized medium, similar to the low-density ionized halo reported previously in its [OIII] 52 and 88 um line emission. When compared with the ISO [CII] observations of this region, we find that ~27% of the [CII] line emission arises from this low-density ionized gas, but the large majority ~ 73% of the observed [CII] line emission arises from the neutral interstellar medium. This result supports and underpins prior conclusions that most of the observed [CII] 158 um line emission from Galactic and extragalactic sources arises from the warm, dense photodissociated surfaces of molecular clouds. The detection of the [NII] line demonstrates the utility of Antarctic sites for THz spectroscopy.
We report the detection of [O I]145.5um in the BR 1202-0725 system, a compact group at z=4.7 consisting of a quasar (QSO), a submillimeter-bright galaxy (SMG), and three faint Lya emitters. By taking into account the previous detections and upper limits, the [O I]/[C II] line ratios of the now five known high-z galaxies are higher than or on the high-end of the observed values in local galaxies ([O I]/[C II]$gtrsim$0.13). The high [O I]/[C II] ratios and the joint analysis with the previous detection of [N II] lines for both the QSO and the SMG suggest the presence of warm and dense neutral gas in these highly star-forming galaxies. This is further supported by new CO (12-11) line detections and a comparison with cosmological simulations. There is a possible positive correlation between the [NII]122/205 line ratio and the [O I]/[C II] ratio when all local and high-z sources are taken into account, indicating that the denser the ionized gas, the denser and warmer the neutral gas (or vice versa). The detection of the [O I] line in the BR1202-0725 system with a relatively short amount of integration with ALMA demonstrates the great potential of this line as a dense gas tracer for high-z galaxies.
The [NII] 122 and 205 mu m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ~1 kiloparsec, with observations of both [NII] far-infrared lines. We measure [NII] 122/205 line ratios in the ~0.6-6 range, which corresponds to electron gas densities $n_e$~1-300 cm$^{-3}$, with a median value of $n_e$=30 cm$^{-3}$. Variations in the electron density within individual galaxies can be as a high as a factor of ~50, frequently with strong radial gradients. We find that $n_e$ increases as a function of infrared color, dust-weighted mean starlight intensity, and star formation rate surface density ($Sigma_{SFR}$). As the intensity of the [NII] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the star formation rate (SFR). We derive relations between the [NII] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [NII] surface brightness and $Sigma_{SFR}$ can be understood as a property of the $n_e$ distribution. For regions with $n_e$ close to or higher than the [NII] line critical densities, the low-density limit [NII]-based SFR calibration systematically underestimates the SFR since [NII] emission is collisionally quenched. Finally, we investigate the relation between [NII] emission, SFR, and $n_e$ by comparing our observations to predictions from the MAPPINGS-III code.
Understanding the process of quenching is one of the major open questions in galaxy evolution, and crucial insights may be obtained by studying quenched galaxies at high redshifts, at epochs when the Universe and the galaxies were younger and simpler to model. However, establishing the degree of quiescence in high redshift galaxies is a challenging task. One notable example is Hyde, a recently discovered galaxy at z=3.709. As compact (r~0.5 kpc) and massive (M*~1e11 Msun) as its quenched neighbor Jekyll, it is also extremely obscured yet only moderately luminous in the sub-millimeter. Panchromatic modeling suggested it could be the first galaxy found in transition to quenching at z>3, however the data were also consistent with a broad range of star-formation activity, including moderate SFR in the lower scatter of the galaxy main-sequence (MS). Here, we describe ALMA observations of the [CII] 157um and [NII] 205um far-infrared emission lines. The [CII] emission within the half-light radius is dominated by ionized gas, while the outskirts are dominated by PDRs or neutral gas. This suggests that the ionization in the center is not primarily powered by on-going star formation, and could come instead from remnant stellar populations formed in an older burst, or from a moderate AGN. Accounting for this information in the multi-wavelength modeling provides a tighter constraint on the star formation rate of SFR=$50^{+24}_{-18}$ Msun/yr. This rules out fully quenched solutions, and favors SFRs more than factor of two lower than expected for a galaxy on the MS, confirming the nature of Hyde as a transition galaxy. Theses results suggest that quenching happens from inside-out, and starts before the galaxy expels or consumes all its gas reservoirs. Similar observations of a larger sample would determine whether this is an isolated case or the norm for quenching at high-redshift. [abriged]
A summary is presented for 130 galaxies observed with the Herschel PACS instrument to measure fluxes for the [CII] 158 um emission line. Sources cover a wide range of active galactic nucleus to starburst classifications, as derived from polycyclic aromatic hydrocarbon (PAH) strength measured with the Spitzer Infrared Spectrograph. Redshifts from [CII] and line to continuum strengths (equivalent width of [CII]) are given for the full sample, which includes 18 new [CII] flux measures. Calibration of L([CII)]) as a star formation rate (SFR) indicator is determined by comparing [CII] luminosities with mid-infrared [NeII] and [NeIII] emission line luminosities; this gives the same result as determining SFR using bolometric luminosities of reradiating dust from starbursts: log SFR = log L([CII)]) - 7.0, for SFR in solar masses per year and L([CII]) in solar luminosities. We conclude that L([CII]) can be used to measure SFR in any source to a precision of ~ 50%, even if total source luminosities are dominated by an AGN component. The line to continuum ratio at 158 um, EW([CII]), is not significantly greater for starbursts (median EW([CII]) = 1.0 um) compared to composites and AGN (median EW([CII]) = 0.7 um), showing that the far infrared continuum at 158 um scales with [CII] regardless of classification. This indicates that the continuum at 158 um also arises primarily from the starburst component within any source, giving log SFR = log vLv(158 um) - 42.8 for SFR in solar masses per year and vLv(158 um) in erg per sec.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا