No Arabic abstract
Convolutional neural networks are showing promise in the automatic diagnosis of thoracic pathologies on chest x-rays. Their black-box nature has sparked many recent works to explain the prediction via input feature attribution methods (aka saliency methods). However, input feature attribution methods merely identify the importance of input regions for the prediction and lack semantic interpretation of model behavior. In this work, we first identify the semantics associated with internal units (feature maps) of the network. We proceed to investigate the following questions; Does a regression model that is only trained with COVID-19 severity scores implicitly learn visual patterns associated with thoracic pathologies? Does a network that is trained on weakly labeled data (e.g. healthy, unhealthy) implicitly learn pathologies? Moreover, we investigate the effect of pretraining and data imbalance on the interpretability of learned features. In addition to the analysis, we propose semantic attribution to semantically explain each prediction. We present our findings using publicly available chest pathologies (CheXpert, NIH ChestX-ray8) and COVID-19 datasets (BrixIA, and COVID-19 chest X-ray segmentation dataset). The Code is publicly available.
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world. Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed, and could largely reduce the efforts of clinicians and accelerate the diagnosis process. Chest computed tomography (CT) has been recognized as an informative tool for diagnosis of the disease. In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images. To fully explore multiple features describing CT images from different views, a unified latent representation is learned which can completely encode information from different aspects of features and is endowed with promising class structure for separability. Specifically, the completeness is guaranteed with a group of backward neural networks (each for one type of features), while by using class labels the representation is enforced to be compact within COVID-19/community-acquired pneumonia (CAP) and also a large margin is guaranteed between different types of pneumonia. In this way, our model can well avoid overfitting compared to the case of directly projecting highdimensional features into classes. Extensive experimental results show that the proposed method outperforms all comparison methods, and rather stable performances are observed when varying the numbers of training data.
Early detection of the coronavirus disease 2019 (COVID-19) helps to treat patients timely and increase the cure rate, thus further suppressing the spread of the disease. In this study, we propose a novel deep learning based detection and similar case recommendation network to help control the epidemic. Our proposed network contains two stages: the first one is a lung region segmentation step and is used to exclude irrelevant factors, and the second is a detection and recommendation stage. Under this framework, in the second stage, we develop a dual-children network (DuCN) based on a pre-trained ResNet-18 to simultaneously realize the disease diagnosis and similar case recommendation. Besides, we employ triplet loss and intrapulmonary distance maps to assist the detection, which helps incorporate tiny differences between two images and is conducive to improving the diagnostic accuracy. For each confirmed COVID-19 case, we give similar cases to provide radiologists with diagnosis and treatment references. We conduct experiments on a large publicly available dataset (CC-CCII) and compare the proposed model with state-of-the-art COVID-19 detection methods. The results show that our proposed model achieves a promising clinical performance.
Neural networks have demonstrated remarkable performance in classification and regression tasks on chest X-rays. In order to establish trust in the clinical routine, the networks prediction mechanism needs to be interpretable. One principal approach to interpretation is feature attribution. Feature attribution methods identify the importance of input features for the output prediction. Building on Information Bottleneck Attribution (IBA) method, for each prediction we identify the chest X-ray regions that have high mutual information with the networks output. Original IBA identifies input regions that have sufficient predictive information. We propose Inverse IBA to identify all informative regions. Thus all predictive cues for pathologies are highlighted on the X-rays, a desirable property for chest X-ray diagnosis. Moreover, we propose Regression IBA for explaining regression models. Using Regression IBA we observe that a model trained on cumulative severity score labels implicitly learns the severity of different X-ray regions. Finally, we propose Multi-layer IBA to generate higher resolution and more detailed attribution/saliency maps. We evaluate our methods using both human-centric (ground-truth-based) interpretability metrics, and human-independent feature importance metrics on NIH Chest X-ray8 and BrixIA datasets. The Code is publicly available.
Radiological image is currently adopted as the visual evidence for COVID-19 diagnosis in clinical. Using deep models to realize automated infection measurement and COVID-19 diagnosis is important for faster examination based on radiological imaging. Unfortunately, collecting large training data systematically in the early stage is difficult. To address this problem, we explore the feasibility of learning deep models for COVID-19 diagnosis from a single radiological image by resorting to synthesizing diverse radiological images. Specifically, we propose a novel conditional generative model, called CoSinGAN, which can be learned from a single radiological image with a given condition, i.e., the annotations of the lung and COVID-19 infection. Our CoSinGAN is able to capture the conditional distribution of visual finds of COVID-19 infection, and further synthesize diverse and high-resolution radiological images that match the input conditions precisely. Both deep classification and segmentation networks trained on synthesized samples from CoSinGAN achieve notable detection accuracy of COVID-19 infection. Such results are significantly better than the counterparts trained on the same extremely small number of real samples (1 or 2 real samples) by using strong data augmentation, and approximate to the counterparts trained on large dataset (2846 real images). It confirms our method can significantly reduce the performance gap between deep models trained on extremely small dataset and on large dataset, and thus has the potential to realize learning COVID-19 diagnosis from few radiological images in the early stage of COVID-19 pandemic. Our codes are made publicly available at https://github.com/PengyiZhang/CoSinGAN.
Identifying and locating diseases in chest X-rays are very challenging, due to the low visual contrast between normal and abnormal regions, and distortions caused by other overlapping tissues. An interesting phenomenon is that there exist many similar structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes. This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists. Aimed at improving the performance of existing detection methods, we propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals. First of all, under the guidance of the spine line, the spatial transformer network is employed to extract local contralateral patches, which can provide valuable context information for disease proposals. Then, we build up a specific module, based on both additive and subtractive operations, to fuse the features of the disease proposal and the contralateral patch. Our method can be integrated into both fully and weakly supervised disease detection frameworks. It achieves 33.17 AP50 on a carefully annotated private chest X-ray dataset which contains 31,000 images. Experiments on the NIH chest X-ray dataset indicate that our method achieves state-of-the-art performance in weakly-supervised disease localization.