Phase Change Memory by GeSbTe Electrodeposition in Crossbar Arrays


Abstract in English

Phase change memories (PCM) is an emerging type of non-volatile memory that has shown a strong presence in the data-storage market. This technology has recently attracted significant research interest in the development of non-Von Neumann computing architectures such as in-memory and neuromorphic computing. Research in these areas has been primarily motivated by the scalability potential of phase change materials and their compatibility with industrial nanofabrication processes. In this work, we are presenting our development of crossbar phase change memory arrays through the electrodeposition of GeSbTe (GST). We show that GST can be electrodeposited in microfabricated TiN crossbar arrays using a scalable process. Our phase switching test of the electrodeposited materials have shown that a SET/RESET resistance ratio of 2-3 orders of magnitude is achievable with a switching endurance of around 80 cycles. These results represent the first phase switching of electrodeposited GeSbTe in microfabricated crossbar arrays. Our work paves the way towards developing large memory arrays involving electrodeposited materials for passive selectors and phase switching devices. It also opens opportunities for developing a variety of different electronic devices using electrodeposited materials.

Download