No Arabic abstract
Point cloud semantic segmentation often requires largescale annotated training data, but clearly, point-wise labels are too tedious to prepare. While some recent methods propose to train a 3D network with small percentages of point labels, we take the approach to an extreme and propose One Thing One Click, meaning that the annotator only needs to label one point per object. To leverage these extremely sparse labels in network training, we design a novel self-training approach, in which we iteratively conduct the training and label propagation, facilitated by a graph propagation module. Also, we adopt a relation network to generate per-category prototype and explicitly model the similarity among graph nodes to generate pseudo labels to guide the iterative training. Experimental results on both ScanNet-v2 and S3DIS show that our self-training approach, with extremely-sparse annotations, outperforms all existing weakly supervised methods for 3D semantic segmentation by a large margin, and our results are also comparable to those of the fully supervised counterparts.
Annotation burden has become one of the biggest barriers to semantic segmentation. Approaches based on click-level annotations have therefore attracted increasing attention due to their superior trade-off between supervision and annotation cost. In this paper, we propose seminar learning, a new learning paradigm for semantic segmentation with click-level supervision. The fundamental rationale of seminar learning is to leverage the knowledge from different networks to compensate for insufficient information provided in click-level annotations. Mimicking a seminar, our seminar learning involves a teacher-student and a student-student module, where a student can learn from both skillful teachers and other students. The teacher-student module uses a teacher network based on the exponential moving average to guide the training of the student network. In the student-student module, heterogeneous pseudo-labels are proposed to bridge the transfer of knowledge among students to enhance each others performance. Experimental results demonstrate the effectiveness of seminar learning, which achieves the new state-of-the-art performance of 72.51% (mIOU), surpassing previous methods by a large margin of up to 16.88% on the Pascal VOC 2012 dataset.
Compared with tedious per-pixel mask annotating, it is much easier to annotate data by clicks, which costs only several seconds for an image. However, applying clicks to learn video semantic segmentation model has not been explored before. In this work, we propose an effective weakly-supervised video semantic segmentation pipeline with click annotations, called WeClick, for saving laborious annotating effort by segmenting an instance of the semantic class with only a single click. Since detailed semantic information is not captured by clicks, directly training with click labels leads to poor segmentation predictions. To mitigate this problem, we design a novel memory flow knowledge distillation strategy to exploit temporal information (named memory flow) in abundant unlabeled video frames, by distilling the neighboring predictions to the target frame via estimated motion. Moreover, we adopt vanilla knowledge distillation for model compression. In this case, WeClick learns compact video semantic segmentation models with the low-cost click annotations during the training phase yet achieves real-time and accurate models during the inference period. Experimental results on Cityscapes and Camvid show that WeClick outperforms the state-of-the-art methods, increases performance by 10.24% mIoU than baseline, and achieves real-time execution.
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels with available 3D information, which is much easier to obtain with advanced sensors. We manually labeled a subset of the 2D-3D Semantics(2D-3D-S) dataset with bounding boxes, and introduce our 2D-3D inference module to generate accurate pixel-wise segment proposal masks. Guided by 3D information, we first generate a point cloud of objects and calculate objectness probability score for each point. Then we project the point cloud with objectness probabilities back to 2D images followed by a refinement step to obtain segment proposals, which are treated as pseudo labels to train a semantic segmentation network. Our method works in a recursive manner to gradually refine the above-mentioned segment proposals. Extensive experimental results on the 2D-3D-S dataset show that the proposed method can generate accurate segment proposals when bounding box labels are available on only a small subset of training images. Performance comparison with recent state-of-the-art methods further illustrates the effectiveness of our method.
Weakly Supervised Semantic Segmentation (WSSS) based on image-level labels has been greatly advanced by exploiting the outputs of Class Activation Map (CAM) to generate the pseudo labels for semantic segmentation. However, CAM merely discovers seeds from a small number of regions, which may be insufficient to serve as pseudo masks for semantic segmentation. In this paper, we formulate the expansion of object regions in CAM as an increase in information. From the perspective of information theory, we propose a novel Complementary Patch (CP) Representation and prove that the information of the sum of the CAMs by a pair of input images with complementary hidden (patched) parts, namely CP Pair, is greater than or equal to the information of the baseline CAM. Therefore, a CAM with more information related to object seeds can be obtained by narrowing down the gap between the sum of CAMs generated by the CP Pair and the original CAM. We propose a CP Network (CPN) implemented by a triplet network and three regularization functions. To further improve the quality of the CAMs, we propose a Pixel-Region Correlation Module (PRCM) to augment the contextual information by using object-region relations between the feature maps and the CAMs. Experimental results on the PASCAL VOC 2012 datasets show that our proposed method achieves a new state-of-the-art in WSSS, validating the effectiveness of our CP Representation and CPN.
Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, which requires pixel-level annotations. This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation. We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths, which can be used for training more accurate segmentation models. In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes, and the underlying relations between a pair of images are characterized by an efficient co-attention mechanism. Moreover, in order to prevent the model from paying excessive attention to common semantics only, we further propose a graph dropout layer, encouraging the model to learn more accurate and complete object responses. The whole network is end-to-end trainable by iterative message passing, which propagates interaction cues over the images to progressively improve the performance. We conduct experiments on the popular PASCAL VOC 2012 and COCO benchmarks, and our model yields state-of-the-art performance. Our code is available at: https://github.com/Lixy1997/Group-WSSS.