Do you want to publish a course? Click here

Achieving Domain Generalization in Underwater Object Detection by Image Stylization and Domain Mixup

153   0   0.0 ( 0 )
 Added by Pinhao Song
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The performance of existing underwater object detection methods degrades seriously when facing domain shift problem caused by complicated underwater environments. Due to the limitation of the number of domains in the dataset, deep detectors easily just memorize a few seen domain, which leads to low generalization ability. Ulteriorly, it can be inferred that the detector trained on as many domains as possible is domain-invariant. Based on this viewpoint, we propose a domain generalization method from the aspect of data augmentation. First, the style transfer model transforms images from one source domain to another, enriching the domain diversity of the training data. Second, interpolating different domains on feature level, new domains can be sampled on the domain manifold. With our method, detectors will be robust to domain shift. Comprehensive experiments on S-UODAC2020 datasets demonstrate that the proposed method is able to learn domain-invariant representations, and outperforms other domain generalization methods. The source code is available at https://github.com/mousecpn.



rate research

Read More

Convolutional Neural Networks (CNNs) show impressive performance in the standard classification setting where training and testing data are drawn i.i.d. from a given domain. However, CNNs do not readily generalize to new domains with different statistics, a setting that is simple for humans. In this work, we address the Domain Generalization problem, where the classifier must generalize to an unknown target domain. Inspired by recent works that have shown a difference in biases between CNNs and humans, we demonstrate an extremely simple yet effective method, namely correcting this bias by augmenting the dataset with stylized images. In contrast with existing stylization works, which use external data sources such as art, we further introduce a method that is entirely in-domain using no such extra sources of data. We provide a detailed analysis as to the mechanism by which the method works, verifying our claim that it changes the shape/texture bias, and demonstrate results surpassing or comparable to the state of the arts that utilize much more complex methods.
69 - Yufei Wang 2020
One of the main drawbacks of deep Convolutional Neural Networks (DCNN) is that they lack generalization capability. In this work, we focus on the problem of heterogeneous domain generalization which aims to improve the generalization capability across different tasks, which is, how to learn a DCNN model with multiple domain data such that the trained feature extractor can be generalized to supporting recognition of novel categories in a novel target domain. To solve this problem, we propose a novel heterogeneous domain generalization method by mixing up samples across multiple source domains with two different sampling strategies. Our experimental results based on the Visual Decathlon benchmark demonstrates the effectiveness of our proposed method. The code is released in url{https://github.com/wyf0912/MIXALL}
Domain generalization aims to enhance the model robustness against domain shift without accessing the target domain. Since the available source domains for training are limited, recent approaches focus on generating samples of novel domains. Nevertheless, they either struggle with the optimization problem when synthesizing abundant domains or cause the distortion of class semantics. To these ends, we propose a novel domain generalization framework where feature statistics are utilized for stylizing original features to ones with novel domain properties. To preserve class information during stylization, we first decompose features into high and low frequency components. Afterward, we stylize the low frequency components with the novel domain styles sampled from the manipulated statistics, while preserving the shape cues in high frequency ones. As the final step, we re-merge both components to synthesize novel domain features. To enhance domain robustness, we utilize the stylized features to maintain the model consistency in terms of features as well as outputs. We achieve the feature consistency with the proposed domain-aware supervised contrastive loss, which ensures domain invariance while increasing class discriminability. Experimental results demonstrate the effectiveness of the proposed feature stylization and the domain-aware contrastive loss. Through quantitative comparisons, we verify the lead of our method upon existing state-of-the-art methods on two benchmarks, PACS and Office-Home.
Recently, learning-based algorithms have shown impressive performance in underwater image enhancement. Most of them resort to training on synthetic data and achieve outstanding performance. However, these methods ignore the significant domain gap between the synthetic and real data (i.e., interdomain gap), and thus the models trained on synthetic data often fail to generalize well to real underwater scenarios. Furthermore, the complex and changeable underwater environment also causes a great distribution gap among the real data itself (i.e., intra-domain gap). However, almost no research focuses on this problem and thus their techniques often produce visually unpleasing artifacts and color distortions on various real images. Motivated by these observations, we propose a novel Two-phase Underwater Domain Adaptation network (TUDA) to simultaneously minimize the inter-domain and intra-domain gap. Concretely, a new dual-alignment network is designed in the first phase, including a translation part for enhancing realism of input images, followed by an enhancement part. With performing image-level and feature-level adaptation in two parts by jointly adversarial learning, the network can better build invariance across domains and thus bridge the inter-domain gap. In the second phase, we perform an easy-hard classification of real data according to the assessed quality of enhanced images, where a rank-based underwater quality assessment method is embedded. By leveraging implicit quality information learned from rankings, this method can more accurately assess the perceptual quality of enhanced images. Using pseudo labels from the easy part, an easy-hard adaptation technique is then conducted to effectively decrease the intra-domain gap between easy and hard samples.
Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from two domains alone are not sufficient to ensure domain-invariance at most part of latent space. Second, the domain discriminator involved in these methods can only judge real or fake with the guidance of hard label, while it is more reasonable to use soft scores to evaluate the generated images or features, i.e., to fully utilize the inter-domain information. In this paper, we present adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples difference relative to source and target domains. Domain mixup is jointly conducted on pixel and feature level to improve the robustness of models. Extensive experiments prove that the proposed approach can achieve superior performance on tasks with various degrees of domain shift and data complexity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا