In the future, ab initio quantum simulations of heavy ion collisions may become possible with large-scale fault-tolerant quantum computers. We propose a quantum algorithm for studying these collisions by looking at a class of observables requiring dramatically smaller volumes: transport coefficients. These form nonperturbative inputs into theoretical models of heavy ions; thus, their calculation reduces theoretical uncertainties without the need for a full-scale simulation of the collision. We derive the necessary lattice operators in the Hamiltonian formulation and describe how to obtain them on quantum computers. Additionally, we discuss ways to efficiently prepare the relevant thermal state of a gauge theory.