Although wireless technology is available for safety-critical applications, few applications have been used to improve train crossing safety. To prevent potential collisions between trains and vehicles, we present a Dedicated Short-Range Communication (DSRC)-enabled train safety communication system targeting to implement at unmanned crossings. Since our applications purpose is preventing collisions between trains and vehicles, we present a method to calculate the minimum required warning time for head-to-head collision at the train crossing. Furthermore, we define the best- and worst-case scenarios and provide practical measurements at six operating crossings in the U.S. with numerous system configurations such as modulation scheme, transmission power, antenna type, train speed, and vehicle braking distances. From our measurements, we find that the warning application coverage range is independent of the train speed, that the omnidirectional antenna with high transmission power is the best configuration for our system, and that the latency values are mostly less than 5 ms. We use the radio communication coverage to evaluate the time to avoid collision and introduce the safeness level metric. From the measured data, we observe that the DSRC-enabled train safety communication system is feasible for up to 35 mph train speeds which is providing more than 25-30 s time to avoid the collision for 25-65 mph vehicle speeds. Higher train speeds are expected to be safe, but more measurements beyond the 200 m mark with respect to a crossing considered here are needed for a definite conclusion.