No Arabic abstract
Context. Centaurs go around the Sun between the orbits of Jupiter and Neptune. Only a fraction of the known centaurs have been found to display comet-like features. Comet 29P/Schwassmann-Wachmann 1 is the most remarkable active centaur. It orbits the Sun just beyond Jupiter in a nearly circular path. Only a handful of known objects follow similar trajectories. Aims. We present photometric observations of 2020 MK4, a recently found centaur with an orbit not too different from that of 29P, and we perform a preliminary exploration of its dynamical evolution. Methods. We analyzed broadband Cousins R and Sloan g, r, and i images of 2020 MK4 acquired with the Jacobus Kapteyn Telescope and the IAC80 telescope to search for cometary-like activity, and to derive its surface colors and size. Its orbital evolution was studied using direct N-body simulations. Results. Centaur 2020 MK4 is neutral-gray in color and has a faint, compact cometary-like coma. The values of its color indexes, (g-r)=0.42+/-0.04 and (r-i)=0.17+/-0.04, are similar to the solar ones. A lower limit for the absolute magnitude of the nucleus is Hg=11.30+/-0.03 mag which, for an albedo in the range of 0.1-0.04, gives an upper limit for its size in the interval (23, 37) km. Its orbital evolution is very chaotic and 2020 MK4 may be ejected from the Solar System during the next 200 kyr. Comet 29P experienced relatively close flybys with 2020 MK4 in the past, sometimes when they were temporary Jovian satellites. Conclusions. We confirm the presence of a coma of material around a central nucleus. Its surface colors place this centaur among the most extreme members of the gray group. Although its past, present, and future dynamical evolution resembles that of 29P, more data are required to confirm or reject a possible connection between the two objects and perhaps others.
P/2011 S1 (Gibbs) is an outer solar system comet or active Centaur with a similar orbit to that of the famous 29P/Schwassmann-Wachmann 1. P/2011 S1 (Gibbs) has been observed by the Pan-STARRS 1 (PS1) sky survey from 2010 to 2012. The resulting data allow us to perform multi-color studies of the nucleus and coma of the comet. Analysis of PS1 images reveals that P/2011 S1 (Gibbs) has a small nucleus $< 4$ km radius, with colors $g_{P1}-r_{P1} = 0.5 pm 0.02$, $r_{P1}-i_{P1} = 0.12 pm 0.02$ and $i_{P1}-z_{P1} = 0.46 pm 0.03$. The comet remained active from 2010 to 2012, with a model-dependent mass-loss rate of $sim100$ kg s$^{-1}$. The mass-loss rate per unit surface area of P/2011 S1 (Gibbs) is as high as that of 29P/Schwassmann-Wachmann 1, making it one of the most active Centaurs. The mass-loss rate also varies with time from $sim 40$ kg s$^{-1}$ to 150 kg s$^{-1}$. Due to its rather circular orbit, we propose that P/2011 S1 (Gibbs) has 29P/Schwassmann-Wachmann 1-like outbursts that control the outgassing rate. The results indicate that it may have a similar surface composition to that of 29P/Schwassmann-Wachmann 1. Our numerical simulations show that the future orbital evolution of P/2011 S1 (Gibbs) is more similar to that of the main population of Centaurs than to that of 29P/Schwassmann-Wachmann 1. The results also demonstrate that P/2011 S1 (Gibbs) is dynamically unstable and can only remain near its current orbit for roughly a thousand years.
(60558) 174P/Echeclus is an unusual object that belongs to a class of minor planets called Centaurs, which may be intermediate between Kuiper Belt Objects and Jupiter Family comets. It is sporadically active throughout its orbit at distances too far for water ice to sublimate, the source of activity for most comets. Thus, its coma must be triggered by another mechanism. In 2005, Echeclus had a strong outburst with peculiar behavior that raised questions about the nucleus homogeneity. In order to test nucleus models, we performed the most sensitive search to date for the highly volatile CO molecule via its J=2-1 emission toward Echeclus during 2016 May-June (at 6.1 astronomical units from the Sun) using the Arizona Radio Observatory 10-m Submillimeter Telescope. We obtained a 3.6-sigma detection with a slightly blue-shifted (delta v = -0.55 +- 0.1 km/s) and narrow (FWHM = 0.53 +- 0.23 km/s) line. The data are consistent with emission from a cold gas from the sunward side of the nucleus, as seen in two other comets at 6 AU. We derive a production rate of Q(CO) = (7.7 +- 3.3)x10^26 mol/s, which is capable of driving the estimated dust production rates. Echeclus CO outgassing rate is ~40 times lower than what is typically seen for another Centaur at this distance, 29P/Schwassmann-Wachmann 1. We also used the IRAM 30-m telescope to search for the CO J=2-1 line, and derive an upper limit that is above the SMT detection. Compared to the relatively unprocessed comet C/1995 O1 (Hale-Bopp), Echeclus produces significantly less CO, as do Chiron and four other Centaurs.
The recently discovered object P/2019 LD2 (ATLAS) was initially thought to be a Jupiter Trojan asteroid, until dynamical studies and the appearance of persistent cometary activity revealed that this object is actually an active Centaur. However, the dynamical history, thermal environment, and impact of such environments on the activity of 2019 LD2 are poorly understood. Here we conduct dynamical simulations to constrain its orbital history and resulting thermal environment over the past 3000 years. We find that 2019 LD2 is currently in the vicinity of a dynamical Gateway that facilitates the majority of transitions from the Centaur population into the Jupiter Family of Comets (JFC population; Sarid et al. 2019). Our calculations show that it is unlikely to have spent significant amounts of time in the inner solar system, suggesting that its nucleus is relatively pristine in terms of physical, chemical, and thermal processing through its history. This could explain its relatively high level of distant activity as a recently activated primordial body. Finally, we find that the median frequency of transition from the Gateway population into the JFC population varies from once every ~3 years to less than once every 70 years, if 2019 LD2s nucleus is ~1 km in radius or greater than 3 km in radius. Forward modeling of 2019 LD2 shows that it will transition into the JFC population in 2063, representing the first known opportunity to observe the evolution of an active Centaur nucleus as it experiences this population-defining transition.
Gateway Centaur and Jupiter co-orbital P/2019 LD2 (ATLAS) (Sarid et al. 2019) provides the first opportunity to observe the migration of a Solar System small body from a Centaur orbit to a Jupiter Family Comet (JFC) four decades from now (Kareta et al., 2020; Hsieh et al. 2020). The Gateway transition region is beyond where water ice can power cometary activity, and coma production there is as poorly understood as in all Centaurs. We present contemporaneous multi-wavelength observations of LD2 from 2020 July 2-4: Gemini-North visible imaging, NASA IRTF near-infrared spectroscopy, and ARO SMT millimeter-wavelength spectroscopy. Precovery DECam images limit the nucleus effective radius to <=1.2 km and no large outbursts were seen in archival Catalina Sky Survey observations. LD2s coma has g-r=0.70+/-0.07, r-i=0.26+/-0.07, a dust production rate of ~10-20 kg/s, and an outflow velocity between v~0.6-3.3 m/s. We did not detect CO towards LD2 on 2020 July 2-3, with a 3-sigma upper limit of Q(CO) < 4.4 * 10^27 mol/s (<200 kg/s). Near-infrared spectra show evidence for water ice at the 1-10% level depending on grain size. Spatial profiles and archival data are consistent with sustained activity. The evidence supports the hypothesis that LD2 is a typical small Centaur that will become a typical JFC, and thus it is critical to understanding the transition between these two populations. Finally, we discuss potential strategies for a community-wide, long baseline monitoring effort.
Until now, rings have been detected in the Solar System exclusively around the four giant planets. Here we report the discovery of the first minor-body ring system around the Centaur object (10199) Chariklo, a body with equivalent radius 124$pm$9 km. A multi-chord stellar occultation revealed the presence of two dense rings around Chariklo, with widths of about 7 km and 3 km, optical depths 0.4 and 0.06, and orbital radii 391 and 405 km, respectively. The present orientation of the ring is consistent with an edge-on geometry in 2008, thus providing a simple explanation for the dimming of Chariklos system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partially composed of water ice. These rings may be the remnants of a debris disk, which were possibly confined by embedded kilometre-sized satellites.