Do you want to publish a course? Click here

AstroSat Science Support Cell

433   0   0.0 ( 0 )
 Added by Jayashree Roy Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

AstroSat is Indias first dedicated multi-wavelength space observatory launched by the Indian Space Research Organisation (ISRO) on 28 September 2015. After launch, the AstroSat Science Support Cell (ASSC) was set up as a joint venture of ISRO and the Inter-University Centre for Astronomy and Astrophysics (IUCAA) with the primary purpose of facilitating the use of AstroSat, both for making observing proposals and for utilising archival data. The ASSC organises meetings, workshops and webinars to train users in these activities, runs a help desk to address user queries, provides utility tools and disseminates analysis software through a consolidated web portal. It also maintains the AstroSat Proposal Processing System (APPS) which is deployed at ISSDC, a software platform central to the workflow management of AstroSat operations. This paper illustrates the various aspects of ASSC functionality.



rate research

Read More

Cadmium-Zinc-Telluride Imager (CZTI) is one of the five payloads on-board recently launched Indian astronomy satellite AstroSat. CZTI is primarily designed for simultaneous hard X-ray imaging and spectroscopy of celestial X-ray sources. It employs the technique of coded mask imaging for measuring spectra in the energy range of 20 - 150 keV. It was the first scientific payload of AstroSat to be switched on after one week of the launch and was made operational during the subsequent week. Here we present preliminary results from the performance verification phase observations and discuss the in-orbit performance of CZTI.
Laboratory studies for planetary science and astrobiology aimat advancing our understanding of the Solar System through the promotion of theoretical and experimental research into the underlying processes that shape it. Laboratory studies (experimental and theoretical) are crucial to interpret observations and mission data, and are key incubators for new mission concepts as well as instrument development and calibration. They also play a vital role in determining habitability of Solar System bodies, enhancing our understanding of the origin of life, and in the search for signs of life beyond Earth, all critical elements of astrobiology. Here we present an overview of the planetary science areas where laboratory studies are critically needed, in particular in the next decade. These areas include planetary & satellites atmospheres, surfaces, and interiors, primitive bodies such as asteroids, meteorites, comets, and trans-Neptunian objects, and signs of life. Generating targeted experimental and theoretical laboratory data that are relevant for a better understanding of the physical, chemical, and biological processes occurring in these environments is crucial. For each area we present i) a brief overview of the state-of-the-art laboratory work, ii) the challenges to analyze and interpret data sets from missions and ground-based observations and to support mission and concept development, and iii) recommendations for high priority laboratory studies.
The NASA LISA Study Team was tasked to study how NASA might support US scientists to participate and maximize the science return from the Laser Interferometer Space Antenna (LISA) mission. LISA is gravitational wave observatory led by ESA with NASA as a junior partner, and is scheduled to launch in 2034. Among our findings: LISA science productivity is greatly enhanced by a full-featured US science center and an open access data model. As other major missions have demonstrated, a science center acts as both a locus and an amplifier of research innovation, data analysis, user support, user training and user interaction. In its most basic function, a US Science Center could facilitate entry into LISA science by hosting a Data Processing Center and a portal for the US community to access LISA data products. However, an enhanced LISA Science Center could: support one of the parallel independent processing pipelines required for data product validation; stimulate the high level of research on data analysis that LISA demands; support users unfamiliar with a novel observatory; facilitate astrophysics and fundamental research; provide an interface into the subtleties of the instrument to validate extraordinary discoveries; train new users; and expand the research community through guest investigator, postdoc and student programs. Establishing a US LISA Science Center well before launch can have a beneficial impact on the participation of the broader astronomical community by providing training, hosting topical workshops, disseminating mock catalogs, software pipelines, and documentation. Past experience indicates that successful science centers are established several years before launch; this early adoption model may be especially relevant for a pioneering mission like LISA.
Large Area X-ray Proportional Counter (LAXPC) is one of the major AstroSat payloads. LAXPC instrument will provide high time resolution X-ray observations in 3 to 80 keV energy band with moderate energy resolution. A cluster of three co-aligned identical LAXPC detectors is used in AstroSat to provide large collection area of more than 6000 cm2 . The large detection volume (15 cm depth) filled with xenon gas at about 2 atmosphere pressure, results in detection efficiency greater than 50%, above 30 keV. With its broad energy range and fine time resolution (10 microsecond), LAXPC instrument is well suited for timing and spectral studies of a wide variety of known and transient X-ray sources in the sky. We have done extensive calibration of all LAXPC detectors using radioactive sources as well as GEANT4 simulation of LAXPC detectors. We describe in brief some of the results obtained during the payload verification phase along with LXAPC capabilities.
375 - Abhay Kumar 2021
The Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat is designed for hard X-ray imaging and spectroscopy in the energy range of 20 - 100 keV. The CZT detectors are of 5 mm thickness and hence have good efficiency for Compton interactions beyond 100 keV. The polarisation analysis using CZTI relies on such Compton events and have been verified experimentally. The same Compton events can also be used to extend the spectroscopy up to 380 keV. Further, it has been observed that about 20% pixels of the CZTI detector plane have low gain, and they are excluded from the primary spectroscopy. If these pixels are included, then the spectroscopic capability of CZTI can be extended up to 500 keV and further up to 700 keV with a better gain calibration in the future. Here we explore the possibility of using the Compton events as well as the low gain pixels to extend the spectroscopic energy range of CZTI for ON-axis bright X-ray sources. We demonstrate this technique using Crab observations and explore its sensitivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا