Do you want to publish a course? Click here

Polar-Nematic Order at the Interface of Motility-Induced Phase Separation: The Importance of Looking Ahead

74   0   0.0 ( 0 )
 Added by Chiu Fan Lee
 Publication date 2021
  fields Physics
and research's language is English
 Authors Chiu Fan Lee




Ask ChatGPT about the research

Motility-induced phase separation is a purely non-equilibrium phenomenon in which self-propelled particles aggregate without any attractive interactions. One surprising feature of MIPS is the emergence of polar-nematic order at the interfacial region, whose underlying physics remains poorly understood. Here, I will show analytically and numerically that the many-body physics leading to the interfacial ordering behavior can be captured by an effective speed model. In this model, each particles speed depends on the systems density a short distance ahead of its direction of motion.



rate research

Read More

A collection of self-propelled particles with volume exclusion interactions can exhibit the phenomenology of gas-liquid phase separation, known as motility-induced phase separation (MIPS). The non-equilibrium nature of the system is fundamental to the phase transition, however, it is unclear whether MIPS at criticality contributes a novel universality class to non-equilibrium physics. We demonstrate here that this is not the case by showing that a generic critical MIPS belongs to the Ising universality class with conservative dynamics.
120 - Chiu Fan Lee 2015
Minimal models of self-propelled particles with short-range volume exclusion interactions have been shown to exhibit signatures of phase separation. Here I show that the observed interfacial stability and fluctuations in motility-induced phase separations (MIPS) can be explained by modeling the microscopic dynamics of the active particles in the interfacial region. In addition, I demonstrate the validity of the Gibbs-Thomson relation in MIPS, which provides a functional relationship between the size of a condensed drop and its surrounding vapor concentration. As a result, the coarsening dynamics of MIPS at vanishing supersaturation follows the classic Lifshitz-Slyozov scaling law at the late stage.
207 - Zhan Ma , Ran Ni 2021
Using computer simulations and dynamic mean-field theory, we demonstrate that fast enough rotation of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional motility induced phase separation (MIPS). Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The non-vanishing current in non-equilibrium steady states microscopically originates from the motility ``relieved by automatic rotation, which breaks the detailed balance at the continuum level. This mechanism sheds light on the understanding of dynamic clusters formation observed in a variety of active matter systems, and may help examine the generalization of effective thermodynamic concepts developed in the context of MIPS.
Using a microscopic model of interacting polar biofilaments and motor proteins, we characterize the phase diagram of both homogeneous and inhomogeneous states in terms of experimental parameters. The polarity of motor clusters is key in determining the organization of the filaments in homogeneous isotropic, polarized and nematic states, while motor-induced bundling yields spatially inhomogeneous structures.
Self-propelled particle (SPP) systems are intrinsically out of equilibrium systems, where each individual particle converts energy into work to move in a dissipative medium. When interacting through a velocity alignment mechanism, and the medium acts as a momentum sink, even momentum is not conserved. In this scenario, a mapping into an equilibrium system seems unlikely. Here, we show that an entropy functional can be derived for SPPs with velocity alignment and density-dependent speed, at least in the (orientationally) disordered phase. This non-trivial result has important physical consequences. The study of the entropy functional reveals that the system can undergo phase separation before the orientational-order phase transition known to occur in SPP systems with velocity alignment.Moreover, we indicate that the spinodal line is a function of the alignment sensitivity and show that density fluctuations as well as the critical spatial diffusion, that leads to phase separation, dramatically increase as the orientational-order transition is approached.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا