We construct symmetric self-similar Dirichlet forms on unconstrained Sierpinski carpets, which are natural extension of planner Sierpinski carpets by allowing the small cells to live off the $1/k$ grids. The intersection of two cells can be a line segment of irrational length, and we also drop the non-diagonal assumption in this recurrent setting. The proof of the existence is purely analytic. A uniqueness theorem is also provided. Moreover, the additional freedom of unconstrained Sierpinski carpets allows us to slide the cells around. In this situation, we view unconstrained Sierpinski carpets as moving fractals, and we prove that the self-similar Dirichlet forms will vary continuously in a $Gamma$-convergence sense.