No Arabic abstract
Semantic relationships, such as hyponym-hypernym, cause-effect, meronym-holonym etc. between a pair of entities in a sentence are usually reflected through syntactic patterns. Automatic extraction of such patterns benefits several downstream tasks, including, entity extraction, ontology building, and question answering. Unfortunately, automatic extraction of such patterns has not yet received much attention from NLP and information retrieval researchers. In this work, we propose an attention-based supervised deep learning model, ASPER, which extracts syntactic patterns between entities exhibiting a given semantic relation in the sentential context. We validate the performance of ASPER on three distinct semantic relations -- hyponym-hypernym, cause-effect, and meronym-holonym on six datasets. Experimental results show that for all these semantic relations, ASPER can automatically identify a collection of syntactic patterns reflecting the existence of such a relation between a pair of entities in a sentence. In comparison to the existing methodologies of syntactic pattern extraction, ASPERs performance is substantially superior.
State-of-the-art methods for relation extraction consider the sentential context by modeling the entire sentence. However, syntactic indicators, certain phrases or words like prepositions that are more informative than other words and may be beneficial for identifying semantic relations. Other approaches using fixed text triggers capture such information but ignore the lexical diversity. To leverage both syntactic indicators and sentential contexts, we propose an indicator-aware approach for relation extraction. Firstly, we extract syntactic indicators under the guidance of syntactic knowledge. Then we construct a neural network to incorporate both syntactic indicators and the entire sentences into better relation representations. By this way, the proposed model alleviates the impact of noisy information from entire sentences and breaks the limit of text triggers. Experiments on the SemEval-2010 Task 8 benchmark dataset show that our model significantly outperforms the state-of-the-art methods.
Software verification of evolving systems is challenging mainstream methodologies and tools. Formal verification techniques often conflict with the time constraints imposed by change management practices for evolving systems. Since changes in these systems are often local to restricted parts, an incremental verification approach could be beneficial. This paper introduces SiDECAR, a general framework for the definition of verification procedures, which are made incremental by the framework itself. Verification procedures are driven by the syntactic structure (defined by a grammar) of the system and encoded as semantic attributes associated with the grammar. Incrementality is achieved by coupling the evaluation of semantic attributes with an incremental parsing technique. We show the application of SiDECAR to the definition of two verification procedures: probabilistic verification of reliability requirements and verification of safety properties.
While numerous attempts have been made to jointly parse syntax and semantics, high performance in one domain typically comes at the price of performance in the other. This trade-off contradicts the large body of research focusing on the rich interactions at the syntax-semantics interface. We explore multiple model architectures which allow us to exploit the rich syntactic and semantic annotations contained in the Universal Decompositional Semantics (UDS) dataset, jointly parsing Universal Dependencies and UDS to obtain state-of-the-art results in both formalisms. We analyze the behaviour of a joint model of syntax and semantics, finding patterns supported by linguistic theory at the syntax-semantics interface. We then investigate to what degree joint modeling generalizes to a multilingual setting, where we find similar trends across 8 languages.
We investigate the extent to which individual attention heads in pretrained transformer language models, such as BERT and RoBERTa, implicitly capture syntactic dependency relations. We employ two methods---taking the maximum attention weight and computing the maximum spanning tree---to extract implicit dependency relations from the attention weights of each layer/head, and compare them to the ground-truth Universal Dependency (UD) trees. We show that, for some UD relation types, there exist heads that can recover the dependency type significantly better than baselines on parsed English text, suggesting that some self-attention heads act as a proxy for syntactic structure. We also analyze BERT fine-tuned on two datasets---the syntax-oriented CoLA and the semantics-oriented MNLI---to investigate whether fine-tuning affects the patterns of their self-attention, but we do not observe substantial differences in the overall dependency relations extracted using our methods. Our results suggest that these models have some specialist attention heads that track individual dependency types, but no generalist head that performs holistic parsing significantly better than a trivial baseline, and that analyzing attention weights directly may not reveal much of the syntactic knowledge that BERT-style models are known to learn.
Syntactic and semantic parsing has been investigated for decades, which is one primary topic in the natural language processing community. This article aims for a brief survey on this topic. The parsing community includes many tasks, which are difficult to be covered fully. Here we focus on two of the most popular formalizations of parsing: constituent parsing and dependency parsing. Constituent parsing is majorly targeted to syntactic analysis, and dependency parsing can handle both syntactic and semantic analysis. This article briefly reviews the representative models of constituent parsing and dependency parsing, and also dependency graph parsing with rich semantics. Besides, we also review the closely-related topics such as cross-domain, cross-lingual and joint parsing models, parser application as well as corpus development of parsing in the article.