Production of Useful Work in an Isothermal Cycle: A Monte Carlo Simulation of a Locally Nonchaotic Energy Barrier


Abstract in English

A Monte Carlo simulation is performed on a billiard-type model system, which contains a locally nonchaotic energy barrier. Without extensive particle collision across the energy barrier, the system steady state is nonequilibrium; that is, the particles follow a non-Boltzmann distribution. Remarkably, as the energy barrier varies in an isothermal cycle, the total produced work is greater than the total consumed work, because of the asymmetry in the cross-influence of the thermally correlated thermodynamic driving forces. Such a phenomenon cannot be explained by the second law of thermodynamics. Similar anomalous effects may be achieved if the barrier is switchable or asymmetric. In essence, the energy barrier is a spontaneously nonequilibrium dimension. It is fundamentally different from Maxwells demon, unrelated to the physical nature of information.

Download