No Arabic abstract
The Eikonal equation arises naturally in the limit of the second order Aviles-Giga functional whose $Gamma$-convergence is a long standing challenging problem. The theory of entropy solutions of the Eikonal equation plays a central role in the variational analysis of this problem. Establishing fine structures of entropy solutions of the Eikonal equation, e.g. concentration of entropy measures on $mathcal{H}^1$-rectifiable sets in $2$D, is arguably the key missing part for a proof of the full $Gamma$-convergence of the Aviles-Giga functional. In the first part of this work, for $pin left(1,frac{4}{3}right]$ we establish an $L^p$ version of the main theorem of Ghiraldin and Lamy [Comm. Pure Appl. Math. 73 (2020), no. 2, 317-349]. Specifically we show that if $m$ is a solution to the Eikonal equation, then $min B^{frac{1}{3}}_{3p,infty,loc}$ is equivalent to all entropy productions of $m$ being in $L^p_{loc}$. This result also shows that as a consequence of a weak form of the Aviles-Giga conjecture (namely the conjecture that all solutions to the Eikonal equation whose entropy productions are in $L^p_{loc}$ are rigid) - the rigidity/flexibility threshold of the Eikonal equation is exactly the space $ B^{frac{1}{3}}_{3,infty,loc}$. In the second part of this paper, under the assumption that all entropy productions are in $L^p_{loc}$, we establish a factorization formula for entropy productions of solutions of the Eikonal equation in terms of the two Jin-Kohn entropies. A consequence of this formula is control of all entropy productions by the Jin-Kohn entropies in the $L^p$ setting - this is a strong extension of an earlier result of the authors [Annales de lInstitut Henri Poincar{e}. Analyse Non Lin{e}aire 35 (2018), no. 2, 481-516].
We study a new formulation for the eikonal equation |grad u| =1 on a bounded subset of R^2. Instead of a vector field grad u, we consider a field P of orthogonal projections on 1-dimensional subspaces, with div P in L^2. We prove existence and uniqueness for solutions of the equation P div P=0. We give a geometric description, comparable with the classical case, and we prove that such solutions exist only if the domain is a tubular neighbourhood of a regular closed curve. The idea of the proof is to apply a generalized method of characteristics introduced in Jabin, Otto, Perthame, Line-energy Ginzburg-Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), to a suitable vector field m satisfying P = m otimes m. This formulation provides a useful approach to the analysis of stripe patterns. It is specifically suited to systems where the physical properties of the pattern are invariant under rotation over 180 degrees, such as systems of block copolymers or liquid crystals.
In this paper we study some key effects of a discontinuous forcing term in a fourth order wave equation on a bounded domain, modeling the adhesion of an elastic beam with a substrate through an elastic-breakable interaction. By using a spectral decomposition method we show that the main effects induced by the nonlinearity at the transition from attached to detached states can be traced in a loss of regularity of the solution and in a migration of the total energy through the scales.
We establish the well-posedness and some quantitative stability of the spatially homogeneous Landau equation for hard potentials, using some specific Monge-Kantorovich cost, assuming only that the initial condition is a probability measure with a finite moment of order $p$ for some $p>2$. As a consequence, we extend previous regularity results and show that all non-degenerate measure-valued solutions to the Landau equation, with a finite initial energy, immediately admit analytic densities with finite entropy. Along the way, we prove that the Landau equation instantaneously creates Gaussian moments. We also show existence of weak solutions under the only assumption of finite initial energy.
In this paper, we continue our study of the Boltzmann equation by use of tools originating from the analysis of dispersive equations in quantum dynamics. Specifically, we focus on properties of solutions to the Boltzmann equation with collision kernel equal to a constant in the spatial domain $mathbb{R}^d$, $dgeq 2$, which we use as a model in this paper. Local well-posedness for this equation has been proven using the Wigner transform when $left< v right>^beta f_0 in L^2_v H^alpha_x$ for $min (alpha,beta) > frac{d-1}{2}$. We prove that if $alpha,beta$ are large enough, then it is possible to propagate moments in $x$ and derivatives in $v$ (for instance, $left< x right>^k left< abla_v right>^ell f in L^infty_T L^2_{x,v}$ if $f_0$ is nice enough). The mechanism is an exchange of regularity in return for moments of the (inverse) Wigner transform of $f$. We also prove a persistence of regularity result for the scale of Sobolev spaces $H^{alpha,beta}$; and, continuity of the solution map in $H^{alpha,beta}$. Altogether, these results allow us to conclude non-negativity of solutions, conservation of energy, and the $H$-theorem for sufficiently regular solutions constructed via the Wigner transform. Non-negativity in particular is proven to hold in $H^{alpha,beta}$ for any $alpha,beta > frac{d-1}{2}$, without any additional regularity or decay assumptions.
We prove that Gevrey regularity is propagated by the Boltzmann equation with Maxwellian molecules, with or without angular cut-off. The proof relies on the Wild expansion of the solution to the equation and on the characterization of Gevrey regularity by the Fourier transform.