No Arabic abstract
We have measured the scattering timescale, $tau$, and the scattering spectral index, $alpha$, for 84 single-component pulsars. Observations were carried out with the MeerKAT telescope as part of the Thousand-Pulsar-Array programme in the MeerTime project at frequencies between 0.895 and 1.670 GHz. Our results give a distribution of values for $alpha$ (defined in terms of $tau$ and frequency $ u$ as $taupropto u^{-alpha}$) for which, upon fitting a Gaussian, we obtain a mean and standard deviation of $langlealpharangle = 4.0 pm 0.6$. This is due to our identification of possible causes of inaccurate measurement of $tau$, which, if not filtered out of modelling results, tend to lead to underestimation of $alpha$. The pulsars in our sample have large dispersion measures and are therefore likely to be distant. We find that a model using an isotropic scatter broadening function is consistent with the data, likely due to the averaging effect of multiple scattering screens along the line of sight. Our sample of scattering parameters provides a strong data set upon which we can build to test more complex and time-dependent scattering phenomena, such as extreme scattering events.
We present observations of 35 high spin-down energy radio pulsars using the MeerKAT telescope. Polarisation profiles and associated parameters are also presented. We derive the geometry for a selection of pulsars which show interpulse emission. We point out that, in several cases, these radio pulsars should also be seen in $gamma$-rays but that improved radio timing is required to aid the high-energy detection. We discuss the relationship between the width of the radio profile and its high-energy detectability. Finally, we reflect on the correlation between the spin-down energy and the radio polarisation fraction and the implications this may have for $gamma$-ray emission.
We report here on initial results from the Thousand Pulsar Array (TPA) programme, part of the Large Survey Project MeerTime on the MeerKAT telescope. The interferometer is used in tied-array mode in the band from 856 to 1712~MHz, and the wide band coupled with the large collecting area and low receiver temperature make it an excellent telescope for the study of radio pulsars. The TPA is a 5 year project which aims to observe (a) more than 1000 pulsars to obtain high-fidelity pulse profiles, (b) some 500 of these pulsars over multiple epochs, (c) long sequences of single-pulse trains from several hundred pulsars. The scientific outcomes from the programme will include determination of pulsar geometries, the location of the radio emission within the pulsar magnetosphere, the connection between the magnetosphere and the crust and core of the star, tighter constraints on the nature of the radio emission itself as well as interstellar medium studies. First results presented here include updated dispersion measures, 26 pulsars with Faraday rotation measures derived for the first time and a description of interesting emission phenomena observed thus far.
The Thousand Pulsar Array (TPA) project currently monitors about 500 pulsars with the sensitive MeerKAT radio telescope by using subarrays to observe multiple sources simultaneously. Here we define the adopted observing strategy, which guarantees that each target is observed long enough to obtain a high fidelity pulse profile, thereby reaching a sufficient precision of a simple pulse shape parameter. This precision is estimated from the contribution of the system noise of the telescope, and the pulse-to-pulse variability of each pulsar, which we quantify under some simplifying assumptions. We test the assumptions and choice of model parameters using data from the MeerKAT 64-dish array, Lovell and Parkes telescopes. We demonstrate that the observing times derived from our method produce high fidelity pulse profiles that meet the needs of the TPA in studying pulse shape variability and pulsar timing. Our method can also be used to compare strategies for observing large numbers of pulsars with telescopes capable of forming multiple subarray configurations. We find that using two 32-dish MeerKAT subarrays is the most efficient strategy for the TPA project. We also find that the ability to observe in different array configurations will become increasingly important for large observing programmes using the Square Kilometre Array telescope.
We describe the ongoing Relativistic Binary programme (RelBin), a part of the MeerTime large survey project with the MeerKAT radio telescope. RelBin is primarily focused on observations of relativistic effects in binary pulsars to enable measurements of neutron star masses and tests of theories of gravity. We selected 25 pulsars as an initial high priority list of targets based on their characteristics and observational history with other telescopes. In this paper, we provide an outline of the programme, present polarisation calibrated pulse profiles for all selected pulsars as a reference catalogue along with updated dispersion measures. We report Faraday rotation measures for 24 pulsars, twelve of which have been measured for the first time. More than a third of our selected pulsars show a flat position angle swing confirming earlier observations. We demonstrate the ability of the Rotating Vector Model (RVM), fitted here to seven binary pulsars, including the Double Pulsar (PSR J0737$-$3039A), to obtain information about the orbital inclination angle. We present a high time resolution light curve of the eclipse of PSR J0737$-$3039A by the companions magnetosphere, a high-phase resolution position angle swing for PSR J1141$-$6545, an improved detection of the Shapiro delay of PSR J1811$-$2405, and pulse scattering measurements for PSRs J1227$-$6208, J1757$-$1854, and J1811$-$1736. Finally, we demonstrate that timing observations with MeerKAT improve on existing data sets by a factor of, typically, 2-3, sometimes by an order of magnitude.
Using the state-of-the-art SKA precursor, the MeerKAT radio telescope, we explore the limits to precision pulsar timing of millisecond pulsars achievable due to pulse stochasticity (jitter). We report new jitter measurements in 15 of the 29 pulsars in our sample and find that the levels of jitter can vary dramatically between them. For some, like the 2.2~ms pulsar PSR J2241--5236, we measure an implied jitter of just $sim$ 4~ns/hr, while others like the 3.9~ms PSR J0636--3044 are limited to $sim$ 100 ns/hr. While it is well known that jitter plays a central role to limiting the precision measurements of arrival times for high signal-to-noise ratio observations, its role in the measurement of dispersion measure (DM) has not been reported, particularly in broad-band observations. Using the exceptional sensitivity of MeerKAT, we explored this on the bright millisecond pulsar PSR J0437--4715 by exploring the DM of literally every pulse. We found that the derived single pulse DMs vary by typically 0.0085 cm$^{-3}$ pc from the mean, and that the best DM estimate is limited by the differential pulse jitter across the band. We postulate that all millisecond pulsars will have their own limit on DM precision which can only be overcome with longer integrations. Using high-time resolution filterbank data of 9 $mu$s, we also present a statistical analysis of single pulse phenomenology. Finally, we discuss optimization strategies for the MeerKAT pulsar timing program and its role in the context of the International Pulsar Timing Array (IPTA).