Do you want to publish a course? Click here

Imaging at 300 MHz With the MWA

169   0   0.0 ( 0 )
 Added by Jaiden Cook
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

At relatively high frequencies, highly sensitive grating sidelobes occur in the primary beam patterns of low frequency aperture arrays (LFAA) such as the Murchison Widefield Array (MWA). This occurs when the observing wavelength becomes comparable to the dipole separation for LFAA tiles, which for the MWA occurs at approximately 300 MHz. The presence of these grating sidelobes has made calibration and image processing for 300 MHz MWA observations difficult. This work presents a new calibration and imaging strategy which employs existing techniques to process two example 300 MHz MWA observations. Observations are initially calibrated using a new 300 MHz sky-model which has been interpolated from low frequency and high frequency all-sky surveys. Using this 300 MHz model in conjunction with the accurate MWA tile primary beam model, we perform sky-model calibration for the two example observations. After initial calibration a self-calibration loop is performed by all-sky imaging each observation with WSCLEAN. Using the output all-sky image we mask the main lobe of the image. Using this masked image we perform a sky-subtraction by estimating the masked image visibilities using WSCLEAN. We then image the main lobe of the observations with WSCLEAN. This results in high dynamic range images of the two example observation main lobes. These images have a resolution of 2.4 arcminutes, with a maximum sensitivity of 31 mJy/beam. The calibration and imaging strategy demonstrated in this work, opens the door to performing science at 300 MHz with the MWA, which was previously an inaccessible domain. With this paper we release the code described below and the cross-matched catalogue along with the code to produce a sky-model in the range 70-1400 MHz.



rate research

Read More

The wide adoption of low-frequency radio interferometers as a tool for deeper and higher resolution astronomical observations has revolutionised radio astronomy. Despite their construction from static, relatively simple dipoles, the sheer number of distinct elements introduces new, complicated instrumental effects. Their necessary remote locations exacerbate failure rates, while electronic interactions between the many adjacent receiving elements can lead to non-trivial instrumental effects. The Murchison Widefield Array (MWA) employs phased array antenna elements (tiles), which improve collecting area at the expense of complex beam shapes. Advanced electromagnetic simulations have produced the Fully Embedded Element (FEE) simulated beam model which has been highly successful in describing the ideal beam response of MWA antennas. This work focuses on the relatively unexplored aspect of various in-situ, environmental perturbations to beam models and represents the first large-scale, in-situ, all-sky measurement of MWA beam shapes at multiple polarizations and pointings. Our satellite based beam measurement approach enables all-sky beam response measurements with a dynamic range of sim 50 dB, at 137 MHz.
43 - F. Kirsten 2019
The high sensitivity and wide frequency coverage of the Murchison Widefield Array allow for the measurement of the spectral scaling of the pulsar scattering timescale, $alpha$, from a single observation. Here we present three case studies targeted at bright, strongly scattered pulsars J0534+2200 (the Crab pulsar), J0835-4510 (the Vela pulsar) and J0742-2822. We measure the scattering spectral indices to be $-3.8pm0.2$, $-4.0pm1.5$, and $-2.5pm0.6$ for the Crab, Vela, and J0742-2822, respectively. We find that the scattered profiles of both Vela and J0742-2822 are best described by a thin screen model where the Gum Nebula likely contributes most of the observed scattering delay. For the Crab pulsar we see characteristically different pulse shapes compared to higher frequencies, for which none of the scattering screen models we explore are found to be optimal. The presence of a finite inner scale to the turbulence can possibly explain some of the discrepancies.
We present observations taken with the Precision Array for Probing the Epoch of Reionization (PAPER) of the Centaurus A field in the frequency range 114 to 188 MHz. The resulting image has a 25 resolution, a dynamic range of 3500 and an r.m.s. of 0.5 Jybeam (for a beam size of 25 x 23). A spectral index map of Cen A is produced across the full band. The spectral index distribution is qualitatively consistent with electron reacceleration in regions of excess turbulence in the radio lobes, as previously identified morphologically. Hence, there appears to be an association of severe weather in radio lobes with energy input into the relativistic electron population. We compare the PAPER large scale radio image with the X-ray image from the ROSAT All Sky Survey. There is a tentative correlation between radio and X-ray features at the end of the southern lobe, some 200 kpc from the nucleus, as might be expected from inverse Compton scattering of the CMB by the relativistic electrons also responsible for the radio synchrotron emission. The magnetic fields derived from the (possible) IC and radio emission are of similar magnitude to fields derived under the minimum pressure assumptions, ~ 1 {mu}G. However, the X-ray field is complex, with large scale gradients and features possibly unrelated to Cen A. If these X-ray features are unrelated to Cen A, then these fields are lower limits.
The Murchison Widefield Array (MWA) has collected hundreds of hours of Epoch of Reionization (EoR) data and now faces the challenge of overcoming foreground and systematic contamination to reduce the data to a cosmological measurement. We introduce several novel analysis techniques such as cable reflection calibration, hyper-resolution gridding kernels, diffuse foreground model subtraction, and quality control methods. Each change to the analysis pipeline is tested against a two dimensional power spectrum figure of merit to demonstrate improvement. We incorporate the new techniques into a deep integration of 32 hours of MWA data. This data set is used to place a systematic-limited upper limit on the cosmological power spectrum of $Delta^2 leq 2.7 times 10^4$ mK$^2$ at $k=0.27$ h~Mpc$^{-1}$ and $z=7.1$, consistent with other published limits, and a modest improvement (factor of 1.4) over previous MWA results. From this deep analysis we have identified a list of improvements to be made to our EoR data analysis strategies. These improvements will be implemented in the future and detailed in upcoming publications.
One of the major challenges for pulsar timing array (PTA) experiments is the mitigation of the effects of the turbulent interstellar medium (ISM) from timing data. These can potentially lead to measurable delays and/or distortions in the pulse profiles and scale strongly with the inverse of the radio frequency. Low-frequency observations are therefore highly appealing for characterizing them. However, in order to achieve the necessary time resolution to resolve profile features of short-period millisecond pulsars, phase-coherent de-dispersion is essential, especially at frequencies below $300$ MHz. We present the lowest-frequency ($80$-$220$ MHz), coherently de-dispersed detections of one of the most promising pulsars for current and future PTAs, PSR J2241$-$5236, using our new beam-former software for the MWAs voltage capture system (VCS), which reconstructs the time series at a much higher time resolution of $sim 1 mu$s by re-synthesizing the recorded voltage data at $10$-kHz/$100$-$mu$s native resolutions. Our data reveal a dual-precursor type feature in the pulse profile that is either faint or absent in high-frequency observations from Parkes. The resultant high-fidelity detections have enabled dispersion measure (DM) determinations with very high precision, of the order of $(2$-$6)times10^{-6}$ $rm pc,cm^{-3}$, owing to the microsecond level timing achievable for this pulsar at the MWAs low frequencies. This underscores the usefulness of low-frequency observations for probing the ISM toward PTA pulsars and informing optimal observing strategies for PTA experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا