Do you want to publish a course? Click here

Localized surface plasmon enhanced InGaN-based light-emitting diodes with polygonal Au/Al nanoparticles

68   0   0.0 ( 0 )
 Added by Peng Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Localized surface plasmons (LSPs) have played a significant role in improving the light emission efficiency of light emitting diodes (LEDs). In this report, polygonal nanoholes have been fabricated in the p-GaN layer of InGaN-based LEDs by using Ni nanoporous film as the etching mask, and then Au/Al metal nanoparticles are embedded in the nanoholes to form the LSP structure. The coupling between the LSP and the LED has been clearly observed. The results show that the light output of the LEDs has been increased by 46% at higher current injection condition, and together with a shift of the gain peak position to the LSP peak resonance energy. As the coupling distance is decreased from 60 nm to 30 nm, the maximum enhancement factor increases to 2.38. The above results indicate that the LSP from the polygonal metal nanoparticles is a kind of very promising structure to enhance the lighting performance of the InGaN-based LEDs.



rate research

Read More

Silicon-based light sources including light-emitting diodes (LEDs) and laser diodes (LDs) for information transmission are urgently needed for developing monolithic integrated silicon photonics. Silicon doped by ion implantation with erbium ions (Er$^{3+}$) is considered a promising approach, but suffers from an extremely low quantum efficiency. Here we report an electrically pumped superlinear emission at 1.54 $mu$m from Er/O-doped silicon planar LEDs, which are produced by applying a new deep cooling process. Stimulated emission at room temperature is realized with a low threshold current of ~6 mA (~0.8 A/cm2). Time-resolved photoluminescence and photocurrent results disclose the complex carrier transfer dynamics from the silicon to Er3+ by relaxing electrons from the indirect conduction band of the silicon. This picture differs from the frequently-assumed energy transfer by electron-hole pair recombination of the silicon host. Moreover, the amplified emission from the LEDs is likely due to a quasi-continuous Er/O-related donor band created by the deep cooling technique. This work paves a way for fabricating superluminescent diodes or efficient LDs at communication wavelengths based on rare-earth doped silicon.
We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side-facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an anti-parallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.
The accurate determination of the compositional fluctuations is pivotal in understanding their role in the reduction of efficiency in high indium content $In_{x}Ga_{1-x}N$ light-emitting diodes, the origin of which is still poorly understood. Here we have combined electron energy loss spectroscopy (EELS) imaging at sub-nanometer resolution with multiscale computational models to obtain a statistical distribution of the compositional fluctuations in $In_{x}Ga_{1-x}N$ quantum wells (QWs). Employing a multiscale computational model, we show the tendency of intrinsic compositional fluctuation in $In_{x}Ga_{1-x}N$ QWs at different Indium concentration and in the presence of strain. We have developed a systematic formalism based on the autonomous detection of compositional fluctuation in observed and simulated EELS maps. We have shown a direct comparison between the computationally predicted and experimentally observed compositional fluctuations. We have found that although a random alloy model captures the distribution of compositional fluctuations in relatively low In ($sim$ 18%) content $In_{x}Ga_{1-x}N$ QWs, there exists a striking deviation from the model in higher In content ($geq$ 24%) QWs. Our results highlight a distinct behavior in carrier localization driven by compositional fluctuations in the low and high In-content InGaN QWs, which would ultimately affect the performance of LEDs. Furthermore, our robust computational and atomic characterization method can be widely applied to study materials in which nanoscale compositional fluctuations play a significant role on the material performance.
We present results on electrically driven nanobeam photonic crystal cavities formed out of a lateral p-i-n junction in gallium arsenide. Despite their small conducting dimensions, nanobeams have robust electrical properties with high current densities possible at low drive powers. Much like their two-dimensional counterparts, the nanobeam cavities exhibit bright electroluminescence at room temperature from embedded 1,250 nm InAs quantum dots. A small room temperature differential gain is observed in the cavities with minor beam self-heating suggesting that lasing is possible. These results open the door for efficient electrical control of active nanobeam cavities for diverse nanophotonic applications.
We propose a new type of reflective polarizer based on polarization-dependent coupling to surface-plasmon polaritons (SPPs) from free space. This inexpensive polarizer is relatively narrowband but features an extinction ratio of up to 1000 with efficiency of up to 95% for the desired polarization (numbers from a calculation), and thus can be stacked to achieve extinction ratios of 106 or more. As a proof of concept, we experimentally realized a polarizer based on nanoporous aluminum oxide that operates around a wavelength of 10.6 um, corresponding to the output of a CO2 laser, using aluminum anodization, a low-cost electrochemical process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا