Do you want to publish a course? Click here

Multiview Pseudo-Labeling for Semi-supervised Learning from Video

119   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a multiview pseudo-labeling approach to video learning, a novel framework that uses complementary views in the form of appearance and motion information for semi-supervised learning in video. The complementary views help obtain more reliable pseudo-labels on unlabeled video, to learn stronger video representations than from purely supervised data. Though our method capitalizes on multiple views, it nonetheless trains a model that is shared across appearance and motion input and thus, by design, incurs no additional computation overhead at inference time. On multiple video recognition datasets, our method substantially outperforms its supervised counterpart, and compares favorably to previous work on standard benchmarks in self-supervised video representation learning.



rate research

Read More

In this paper we revisit the idea of pseudo-labeling in the context of semi-supervised learning where a learning algorithm has access to a small set of labeled samples and a large set of unlabeled samples. Pseudo-labeling works by applying pseudo-labels to samples in the unlabeled set by using a model trained on the combination of the labeled samples and any previously pseudo-labeled samples, and iteratively repeating this process in a self-training cycle. Current methods seem to have abandoned this approach in favor of consistency regularization methods that train models under a combination of different styles of self-supervised losses on the unlabeled samples and standard supervised losses on the labeled samples. We empirically demonstrate that pseudo-labeling can in fact be competitive with the state-of-the-art, while being more resilient to out-of-distribution samples in the unlabeled set. We identify two key factors that allow pseudo-labeling to achieve such remarkable results (1) applying curriculum learning principles and (2) avoiding concept drift by restarting model parameters before each self-training cycle. We obtain 94.91% accuracy on CIFAR-10 using only 4,000 labeled samples, and 68.87% top-1 accuracy on Imagenet-ILSVRC using only 10% of the labeled samples. The code is available at https://github.com/uvavision/Curriculum-Labeling
3D object detection is an important task in computer vision. Most existing methods require a large number of high-quality 3D annotations, which are expensive to collect. Especially for outdoor scenes, the problem becomes more severe due to the sparseness of the point cloud and the complexity of urban scenes. Semi-supervised learning is a promising technique to mitigate the data annotation issue. Inspired by this, we propose a novel semi-supervised framework based on pseudo-labeling for outdoor 3D object detection tasks. We design the Adaptive Class Confidence Selection module (ACCS) to generate high-quality pseudo-labels. Besides, we propose Holistic Point Cloud Augmentation (HPCA) for unlabeled data to improve robustness. Experiments on the KITTI benchmark demonstrate the effectiveness of our method.
Deep semi-supervised learning (SSL) has experienced significant attention in recent years, to leverage a huge amount of unlabeled data to improve the performance of deep learning with limited labeled data. Pseudo-labeling is a popular approach to expand the labeled dataset. However, whether there is a more effective way of labeling remains an open problem. In this paper, we propose to label only the most representative samples to expand the labeled set. Representative samples, selected by indegree of corresponding nodes on a directed k-nearest neighbor (kNN) graph, lie in the k-nearest neighborhood of many other samples. We design a graph neural network (GNN) labeler to label them in a progressive learning manner. Aided by the progressive GNN labeler, our deep SSL approach outperforms state-of-the-art methods on several popular SSL benchmarks including CIFAR-10, SVHN, and ILSVRC-2012. Notably, we achieve 72.1% top-1 accuracy, surpassing the previous best result by 3.3%, on the challenging ImageNet benchmark with only $10%$ labeled data.
The best performing methods for 3D human pose estimation from monocular images require large amounts of in-the-wild 2D and controlled 3D pose annotated datasets which are costly and require sophisticated systems to acquire. To reduce this annotation dependency, we propose Multiview-Consistent Semi Supervised Learning (MCSS) framework that utilizes similarity in pose information from unannotated, uncalibrated but synchronized multi-view videos of human motions as additional weak supervision signal to guide 3D human pose regression. Our framework applies hard-negative mining based on temporal relations in multi-view videos to arrive at a multi-view consistent pose embedding. When jointly trained with limited 3D pose annotations, our approach improves the baseline by 25% and state-of-the-art by 8.7%, whilst using substantially smaller networks. Lastly, but importantly, we demonstrate the advantages of the learned embedding and establish view-invariant pose retrieval benchmarks on two popular, publicly available multi-view human pose datasets, Human 3.6M and MPI-INF-3DHP, to facilitate future research.
117 - Haowen Lin , Jian Lou , Li Xiong 2021
Federated learning enables multiple clients, such as mobile phones and organizations, to collaboratively learn a shared model for prediction while protecting local data privacy. However, most recent research and applications of federated learning assume that all clients have fully labeled data, which is impractical in real-world settings. In this work, we focus on a new scenario for cross-silo federated learning, where data samples of each client are partially labeled. We borrow ideas from semi-supervised learning methods where a large amount of unlabeled data is utilized to improve the models accuracy despite limited access to labeled examples. We propose a new framework dubbed SemiFed that unifies two dominant approaches for semi-supervised learning: consistency regularization and pseudo-labeling. SemiFed first applies advanced data augmentation techniques to enforce consistency regularization and then generates pseudo-labels using the models predictions during training. SemiFed takes advantage of the federation so that for a given image, the pseudo-label holds only if multiple models from different clients produce a high-confidence prediction and agree on the same label. Extensive experiments on two image benchmarks demonstrate the effectiveness of our approach under both homogeneous and heterogeneous data distribution settings

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا