Do you want to publish a course? Click here

Is Label Smoothing Truly Incompatible with Knowledge Distillation: An Empirical Study

274   0   0.0 ( 0 )
 Added by Zhiqiang Shen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This work aims to empirically clarify a recently discovered perspective that label smoothing is incompatible with knowledge distillation. We begin by introducing the motivation behind on how this incompatibility is raised, i.e., label smoothing erases relative information between teacher logits. We provide a novel connection on how label smoothing affects distributions of semantically similar and dissimilar classes. Then we propose a metric to quantitatively measure the degree of erased information in samples representation. After that, we study its one-sidedness and imperfection of the incompatibility view through massive analyses, visualizations and comprehensive experiments on Image Classification, Binary Networks, and Neural Machine Translation. Finally, we broadly discuss several circumstances wherein label smoothing will indeed lose its effectiveness. Project page: http://zhiqiangshen.com/projects/LS_and_KD/index.html.



rate research

Read More

We present Meta Learning for Knowledge Distillation (MetaDistil), a simple yet effective alternative to traditional knowledge distillation (KD) methods where the teacher model is fixed during training. We show the teacher network can learn to better transfer knowledge to the student network (i.e., learning to teach) with the feedback from the performance of the distilled student network in a meta learning framework. Moreover, we introduce a pilot update mechanism to improve the alignment between the inner-learner and meta-learner in meta learning algorithms that focus on an improved inner-learner. Experiments on various benchmarks show that MetaDistil can yield significant improvements compared with traditional KD algorithms and is less sensitive to the choice of different student capacity and hyperparameters, facilitating the use of KD on different tasks and models. The code is available at https://github.com/JetRunner/MetaDistil
102 - Zhen Huang , Xu Shen , Jun Xing 2021
Knowledge Distillation (KD) is a popular technique to transfer knowledge from a teacher model or ensemble to a student model. Its success is generally attributed to the privileged information on similarities/consistency between the class distributions or intermediate feature representations of the teacher model and the student model. However, directly pushing the student model to mimic the probabilities/features of the teacher model to a large extent limits the student model in learning undiscovered knowledge/features. In this paper, we propose a novel inheritance and exploration knowledge distillation framework (IE-KD), in which a student model is split into two parts - inheritance and exploration. The inheritance part is learned with a similarity loss to transfer the existing learned knowledge from the teacher model to the student model, while the exploration part is encouraged to learn representations different from the inherited ones with a dis-similarity loss. Our IE-KD framework is generic and can be easily combined with existing distillation or mutual learning methods for training deep neural networks. Extensive experiments demonstrate that these two parts can jointly push the student model to learn more diversified and effective representations, and our IE-KD can be a general technique to improve the student network to achieve SOTA performance. Furthermore, by applying our IE-KD to the training of two networks, the performance of both can be improved w.r.t. deep mutual learning. The code and models of IE-KD will be make publicly available at https://github.com/yellowtownhz/IE-KD.
It has been hypothesized that label smoothing can reduce overfitting and improve generalization, and current empirical evidence seems to corroborate these effects. However, there is a lack of mathematical understanding of when and why such empirical improvements occur. In this paper, as a step towards understanding why label smoothing is effective, we propose a theoretical framework to show how label smoothing provides in controlling the generalization loss. In particular, we show that this benefit can be precisely formulated and identified in the label noise setting, where the training is partially mislabeled. Our theory also predicts the existence of an optimal label smoothing point, a single value for the label smoothing hyperparameter that minimizes generalization loss. Extensive experiments are done to confirm the predictions of our theory. We believe that our findings will help both theoreticians and practitioners understand label smoothing, and better apply them to real-world datasets.
Knowledge Distillation (KD) is a model-agnostic technique to improve model quality while having a fixed capacity budget. It is a commonly used technique for model compression, where a larger capacity teacher model with better quality is used to train a more compact student model with better inference efficiency. Through distillation, one hopes to benefit from students compactness, without sacrificing too much on model quality. Despite the large success of knowledge distillation, better understanding of how it benefits student models training dynamics remains under-explored. In this paper, we categorize teachers knowledge into three hierarchical levels and study its effects on knowledge distillation: (1) knowledge of the `universe, where KD brings a regularization effect through label smoothing; (2) domain knowledge, where teacher injects class relationships prior to students logit layer geometry; and (3) instance specific knowledge, where teacher rescales student models per-instance gradients based on its measurement on the event difficulty. Using systematic analyses and extensive empirical studies on both synthetic and real-world datasets, we confirm that the aforementioned three factors play a major role in knowledge distillation. Furthermore, based on our findings, we diagnose some of the failure cases of applying KD from recent studies.
Knowledge distillation has become one of the most important model compression techniques by distilling knowledge from larger teacher networks to smaller student ones. Although great success has been achieved by prior distillation methods via delicately designing various types of knowledge, they overlook the functional properties of neural networks, which makes the process of applying those techniques to new tasks unreliable and non-trivial. To alleviate such problem, in this paper, we initially leverage Lipschitz continuity to better represent the functional characteristic of neural networks and guide the knowledge distillation process. In particular, we propose a novel Lipschitz Continuity Guided Knowledge Distillation framework to faithfully distill knowledge by minimizing the distance between two neural networks Lipschitz constants, which enables teacher networks to better regularize student networks and improve the corresponding performance. We derive an explainable approximation algorithm with an explicit theoretical derivation to address the NP-hard problem of calculating the Lipschitz constant. Experimental results have shown that our method outperforms other benchmarks over several knowledge distillation tasks (e.g., classification, segmentation and object detection) on CIFAR-100, ImageNet, and PASCAL VOC datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا