Do you want to publish a course? Click here

Unsupervised Degradation Representation Learning for Blind Super-Resolution

99   0   0.0 ( 0 )
 Added by Longguang Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Most existing CNN-based super-resolution (SR) methods are developed based on an assumption that the degradation is fixed and known (e.g., bicubic downsampling). However, these methods suffer a severe performance drop when the real degradation is different from their assumption. To handle various unknown degradations in real-world applications, previous methods rely on degradation estimation to reconstruct the SR image. Nevertheless, degradation estimation methods are usually time-consuming and may lead to SR failure due to large estimation errors. In this paper, we propose an unsupervised degradation representation learning scheme for blind SR without explicit degradation estimation. Specifically, we learn abstract representations to distinguish various degradations in the representation space rather than explicit estimation in the pixel space. Moreover, we introduce a Degradation-Aware SR (DASR) network with flexible adaption to various degradations based on the learned representations. It is demonstrated that our degradation representation learning scheme can extract discriminative representations to obtain accurate degradation information. Experiments on both synthetic and real images show that our network achieves state-of-the-art performance for the blind SR task. Code is available at: https://github.com/LongguangWang/DASR.



rate research

Read More

Image super-resolution (SR) research has witnessed impressive progress thanks to the advance of convolutional neural networks (CNNs) in recent years. However, most existing SR methods are non-blind and assume that degradation has a single fixed and known distribution (e.g., bicubic) which struggle while handling degradation in real-world data that usually follows a multi-modal, spatially variant, and unknown distribution. The recent blind SR studies address this issue via degradation estimation, but they do not generalize well to multi-source degradation and cannot handle spatially variant degradation. We design CRL-SR, a contrastive representation learning network that focuses on blind SR of images with multi-modal and spatially variant distributions. CRL-SR addresses the blind SR challenges from two perspectives. The first is contrastive decoupling encoding which introduces contrastive learning to extract resolution-invariant embedding and discard resolution-variant embedding under the guidance of a bidirectional contrastive loss. The second is contrastive feature refinement which generates lost or corrupted high-frequency details under the guidance of a conditional contrastive loss. Extensive experiments on synthetic datasets and real images show that the proposed CRL-SR can handle multi-modal and spatially variant degradation effectively under blind settings and it also outperforms state-of-the-art SR methods qualitatively and quantitatively.
144 - Yukai Shi , Jinghui Qin 2021
Deep convolutional networks have attracted great attention in image restoration and enhancement. Generally, restoration quality has been improved by building more and more convolutional block. However, these methods mostly learn a specific model to handle all images and ignore difficulty diversity. In other words, an area in the image with high frequency tend to lose more information during compressing while an area with low frequency tends to lose less. In this article, we adrress the efficiency issue in image SR by incorporating a patch-wise rolling network(PRN) to content-adaptively recover images according to difficulty levels. In contrast to existing studies that ignore difficulty diversity, we adopt different stage of a neural network to perform image restoration. In addition, we propose a rolling strategy that utilizes the parameters of each stage more flexible. Extensive experiments demonstrate that our model not only shows a significant acceleration but also maintain state-of-the-art performance.
Most conventional supervised super-resolution (SR) algorithms assume that low-resolution (LR) data is obtained by downscaling high-resolution (HR) data with a fixed known kernel, but such an assumption often does not hold in real scenarios. Some recent blind SR algorithms have been proposed to estimate different downscaling kernels for each input LR image. However, they suffer from heavy computational overhead, making them infeasible for direct application to videos. In this work, we present DynaVSR, a novel meta-learning-based framework for real-world video SR that enables efficient downscaling model estimation and adaptation to the current input. Specifically, we train a multi-frame downscaling module with various types of synthetic blur kernels, which is seamlessly combined with a video SR network for input-aware adaptation. Experimental results show that DynaVSR consistently improves the performance of the state-of-the-art video SR models by a large margin, with an order of magnitude faster inference time compared to the existing blind SR approaches.
Although single-image super-resolution (SISR) methods have achieved great success on single degradation, they still suffer performance drop with multiple degrading effects in real scenarios. Recently, some blind and non-blind models for multiple degradations have been explored. However, those methods usually degrade significantly for distribution shifts between the training and test data. Towards this end, we propose a conditional meta-network framework (named CMDSR) for the first time, which helps SR framework learn how to adapt to changes in input distribution. We extract degradation prior at task-level with the proposed ConditionNet, which will be used to adapt the parameters of the basic SR network (BaseNet). Specifically, the ConditionNet of our framework first learns the degradation prior from a support set, which is composed of a series of degraded image patches from the same task. Then the adaptive BaseNet rapidly shifts its parameters according to the conditional features. Moreover, in order to better extract degradation prior, we propose a task contrastive loss to decrease the inner-task distance and increase the cross-task distance between task-level features. Without predefining degradation maps, our blind framework can conduct one single parameter update to yield considerable SR results. Extensive experiments demonstrate the effectiveness of CMDSR over various blind, even non-blind methods. The flexible BaseNet structure also reveals that CMDSR can be a general framework for large series of SISR models.
Recent blind super-resolution (SR) methods typically consist of two branches, one for degradation prediction and the other for conditional restoration. However, our experiments show that a one-branch network can achieve comparable performance to the two-branch scheme. Then we wonder: how can one-branch networks automatically learn to distinguish degradations? To find the answer, we propose a new diagnostic tool -- Filter Attribution method based on Integral Gradient (FAIG). Unlike previous integral gradient methods, our FAIG aims at finding the most discriminative filters instead of input pixels/features for degradation removal in blind SR networks. With the discovered filters, we further develop a simple yet effective method to predict the degradation of an input image. Based on FAIG, we show that, in one-branch blind SR networks, 1) we are able to find a very small number of (1%) discriminative filters for each specific degradation; 2) The weights, locations and connections of the discovered filters are all important to determine the specific network function. 3) The task of degradation prediction can be implicitly realized by these discriminative filters without explicit supervised learning. Our findings can not only help us better understand network behaviors inside one-branch blind SR networks, but also provide guidance on designing more efficient architectures and diagnosing networks for blind SR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا