Do you want to publish a course? Click here

Intuitive Tasks Planning Using Visuo-Tactile Perception for Human Robot Cooperation

102   0   0.0 ( 0 )
 Added by Sunny Katyara
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Designing robotic tasks for co-manipulation necessitates to exploit not only proprioceptive but also exteroceptive information for improved safety and autonomy. Following such instinct, this research proposes to formulate intuitive robotic tasks following human viewpoint by incorporating visuo-tactile perception. The visual data using depth cameras surveils and determines the object dimensions and human intentions while the tactile sensing ensures to maintain the desired contact to avoid slippage. Experiment performed on robot platform with human assistance under industrial settings validates the performance and applicability of proposed intuitive task formulation.



rate research

Read More

Enabling robots to work in close proximity with humans necessitates to employ not only multi-sensory information for coordinated and autonomous interactions but also a control framework that ensures adaptive and flexible collaborative behavior. Such a control framework needs to integrate accuracy and repeatability of robots with cognitive ability and adaptability of humans for co-manipulation. In this regard, an intuitive stack of tasks (iSOT) formulation is proposed, that defines the robots actions based on human ergonomics and task progress. The framework is augmented with visuo-tactile perception for flexible interaction and autonomous adaption. The visual information using depth cameras, monitors and estimates the object pose and human arm gesture while the tactile feedback provides exploration skills for maintaining the desired contact to avoid slippage. Experiments conducted on robot system with human partnership for assembly and disassembly tasks confirm the effectiveness and usability of proposed framework.
In Human-Robot Cooperation (HRC), the robot cooperates with humans to accomplish the task together. Existing approaches assume the human has a specific goal during the cooperation, and the robot infers and acts toward it. However, in real-world environments, a human usually only has a general goal (e.g., general direction or area in motion planning) at the beginning of the cooperation, which needs to be clarified to a specific goal (e.g., an exact position) during cooperation. The specification process is interactive and dynamic, which depends on the environment and the partners behavior. The robot that does not consider the goal specification process may cause frustration to the human partner, elongate the time to come to an agreement, and compromise or fail team performance. We present the Evolutionary Value Learning (EVL) approach, which uses a State-based Multivariate Bayesian Inference method to model the dynamics of the goal specification process in HRC. EVL can actively enhance the process of goal specification and cooperation formation. This enables the robot to simultaneously help the human specify the goal and learn a cooperative policy in a Deep Reinforcement Learning (DRL) manner. In a dynamic ball balancing task with real human subjects, the robot equipped with EVL outperforms existing methods with faster goal specification processes and better team performance.
Handling non-rigid objects using robot hands necessities a framework that does not only incorporate human-level dexterity and cognition but also the multi-sensory information and system dynamics for robust and fine interactions. In this research, our previously developed kernelized synergies framework, inspired from human behaviour on reusing same subspace for grasping and manipulation, is augmented with visuo-tactile perception for autonomous and flexible adaptation to unknown objects. To detect objects and estimate their poses, a simplified visual pipeline using RANSAC algorithm with Euclidean clustering and SVM classifier is exploited. To modulate interaction efforts while grasping and manipulating non-rigid objects, the tactile feedback using T40S shokac chip sensor, generating 3D force information, is incorporated. Moreover, different kernel functions are examined in the kernelized synergies framework, to evaluate its performance and potential against task reproducibility, execution, generalization and synergistic re-usability. Experiments performed with robot arm-hand system validates the capability and usability of upgraded framework on stably grasping and dexterously manipulating the non-rigid objects.
Prior work on generating explanations in a planning and decision-making context has focused on providing the rationale behind an AI agents decision making. While these methods provide the right explanations from the explainers perspective, they fail to heed the cognitive requirement of understanding an explanation from the explainees (the humans) perspective. In this work, we set out to address this issue by first considering the influence of information order in an explanation, or the progressiveness of explanations. Intuitively, progression builds later concepts on previous ones and is known to contribute to better learning. In this work, we aim to investigate similar effects during explanation generation when an explanation is broken into multiple parts that are communicated sequentially. The challenge here lies in modeling the humans preferences for information order in receiving such explanations to assist understanding. Given this sequential process, a formulation based on goal-based MDP for generating progressive explanations is presented. The reward function of this MDP is learned via inverse reinforcement learning based on explanations that are retrieved via human subject studies. We first evaluated our approach on a scavenger-hunt domain to demonstrate its effectively in capturing the humans preferences. Upon analyzing the results, it revealed something more fundamental: the preferences arise strongly from both domain dependent and independence features. The correlation with domain independent features pushed us to verify this result further in an escape room domain. Results confirmed our hypothesis that the process of understanding an explanation was a dynamic process. The human preference that reflected this aspect corresponded exactly to the progression for knowledge assimilation hidden deeper in our cognitive process.
In this paper we propose FlexHRC+, a hierarchical human-robot cooperation architecture designed to provide collaborative robots with an extended degree of autonomy when supporting human operators in high-variability shop-floor tasks. The architecture encompasses three levels, namely for perception, representation, and action. Building up on previous work, here we focus on (i) an in-the-loop decision making process for the operations of collaborative robots coping with the variability of actions carried out by human operators, and (ii) the representation level, integrating a hierarchical AND/OR graph whose online behaviour is formally specified using First Order Logic. The architecture is accompanied by experiments including collaborative furniture assembly and object positioning tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا