Bench-top Cooling of a Microwave Mode using an Optically Pumped Spin Refrigerator


Abstract in English

We experimentally demonstrate the temporary removal of thermal photons from a microwave mode at 1.45 GHz through its interaction with the spin-polarized triplet states of photo-excited pentacene molecules doped within a p-terphenyl crystal at room temperature. The crystal functions electromagnetically as a narrow-band cryogenic load, removing photons from the otherwise room-temperature mode via stimulated absorption. The noise temperature of the microwave mode dropped to $50^{+18}_{-32}$ K (as directly inferred by noise-power measurements) while the metal walls of the cavity enclosing the mode remained at room temperature. Simulations based on the same systems behavior as a maser (which could be characterized more accurately) indicate the possibility of the modes temperature sinking to $sim$10 K (corresponding to $sim$140 microwave photons). These observations, when combined with engineering improvements to deepen the cooling, identify the system as a narrow-band yet extremely convenient platform -- free of cryogenics, vacuum chambers and strong magnets -- for realizing low-noise detectors, quantum memory and quantum-enhanced machines (such as heat engines) based on strong spin-photon coupling and entanglement at microwave frequencies.

Download