Do you want to publish a course? Click here

Pinpointing the Memory Behaviors of DNN Training

76   0   0.0 ( 0 )
 Added by Jiansong Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The training of deep neural networks (DNNs) is usually memory-hungry due to the limited device memory capacity of DNN accelerators. Characterizing the memory behaviors of DNN training is critical to optimize the device memory pressures. In this work, we pinpoint the memory behaviors of each device memory block of GPU during training by instrumenting the memory allocators of the runtime system. Our results show that the memory access patterns of device memory blocks are stable and follow an iterative fashion. These observations are useful for the future optimization of memory-efficient training from the perspective of raw memory access patterns.



rate research

Read More

Many state-of-the-art ML results have been obtained by scaling up the number of parameters in existing models. However, parameters and activations for such large models often do not fit in the memory of a single accelerator device; this means that it is necessary to distribute training of large models over multiple accelerators. In this work, we propose PipeDream-2BW, a system that supports memory-efficient pipeline parallelism. PipeDream-2BW uses a novel pipelining and weight gradient coalescing strategy, combined with the double buffering of weights, to ensure high throughput, low memory footprint, and weight update semantics similar to data parallelism. In addition, PipeDream-2BW automatically partitions the model over the available hardware resources, while respecting hardware constraints such as memory capacities of accelerators and interconnect topologies. PipeDream-2BW can accelerate the training of large GPT and BERT language models by up to 20$times$ with similar final model accuracy.
Modern deep neural network (DNN) training jobs use complex and heterogeneous software/hardware stacks. The efficacy of software-level optimizations can vary significantly when used in different deployment configurations. It is onerous and error-prone for ML practitioners and system developers to implement each optimization separately, and determine which ones will improve performance in their own configurations. Unfortunately, existing profiling tools do not aim to answer predictive questions such as How will optimization X affect the performance of my model?. We address this critical limitation, and proposes a new profiling tool, Daydream, to help programmers efficiently explore the efficacy of DNN optimizations. Daydream models DNN execution with a fine-grained dependency graph based on low-level traces collected by CUPTI, and predicts runtime by simulating execution based on the dependency graph. Daydream maps the low-level traces using DNN domain-specific knowledge, and introduces a set of graph-transformation primitives that can easily model a wide variety of optimizations. We show that Daydream is able to model most mainstream DNN optimization techniques, and accurately predict the efficacy of optimizations that will result in significant performance improvements.
Communication overhead poses an important obstacle to distributed DNN training and draws increasing attention in recent years. Despite continuous efforts, prior solutions such as gradient compression/reduction, compute/communication overlapping and layer-wise flow scheduling, etc., are still coarse-grained and insufficient for an efficient distributed training especially when the network is under pressure. We present DLCP, a novel solution exploiting the domain-specific properties of deep learning to optimize communication overhead of DNN training in a fine-grained manner. At its heart, DLCP comprises of several key innovations beyond prior work: e.g., it exploits {em bounded loss tolerance} of SGD-based training to improve tail communication latency which cannot be avoided purely through gradient compression. It then performs fine-grained packet-level prioritization and dropping, as opposed to flow-level scheduling, based on layers and magnitudes of gradients to further speedup model convergence without affecting accuracy. In addition, it leverages inter-packet order-independency to perform per-packet load balancing without causing classical re-ordering issues. DLCP works with both Parameter Server and collective communication routines. We have implemented DLCP with commodity switches, integrated it with various training frameworks including TensorFlow, MXNet and PyTorch, and deployed it in our small-scale testbed with 10 Nvidia V100 GPUs. Our testbed experiments and large-scale simulations show that DLCP delivers up to $84.3%$ additional training acceleration over the best existing solutions.
Training Deep Neural Networks (DNNs) is resource-intensive and time-consuming. While prior research has explored many different ways of reducing DNN training time, the impact of input data pipeline, i.e., fetching raw data items from storage and performing data pre-processing in memory, has been relatively unexplored. This paper makes the following contributions: (1) We present the first comprehensive analysis of how the input data pipeline affects the training time of widely-used computer vision and audio Deep Neural Networks (DNNs), that typically involve complex data preprocessing. We analyze nine different models across three tasks and four datasets while varying factors such as the amount of memory, number of CPU threads, storage device, GPU generation etc on servers that are a part of a large production cluster at Microsoft. We find that in many cases, DNN training time is dominated by data stall time: time spent waiting for data to be fetched and preprocessed. (2) We build a tool, DS-Analyzer to precisely measure data stalls using a differential technique, and perform predictive what-if analysis on data stalls. (3) Finally, based on the insights from our analysis, we design and implement three simple but effective techniques in a data-loading library, CoorDL, to mitigate data stalls. Our experiments on a range of DNN tasks, models, datasets, and hardware configs show that when PyTorch uses CoorDL instead of the state-of-the-art DALI data loading library, DNN training time is reduced significantly (by as much as 5x on a single server).
Previous studies have shown that initializing neural machine translation (NMT) models with the pre-trained language models (LM) can speed up the model training and boost the model performance. In this work, we identify a critical side-effect of pre-training for NMT, which is due to the discrepancy between the training objectives of LM-based pre-training and NMT. Since the LM objective learns to reconstruct a few source tokens and copy most of them, the pre-training initialization would affect the copying behaviors of NMT models. We provide a quantitative analysis of copying behaviors by introducing a metric called copying ratio, which empirically shows that pre-training based NMT models have a larger copying ratio than the standard one. In response to this problem, we propose a simple and effective method named copying penalty to control the copying behaviors in decoding. Extensive experiments on both in-domain and out-of-domain benchmarks show that the copying penalty method consistently improves translation performance by controlling copying behaviors for pre-training based NMT models. Source code is freely available at https://github.com/SunbowLiu/CopyingPenalty.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا