No Arabic abstract
Question Answering (QA) models over Knowledge Bases (KBs) are capable of providing more precise answers by utilizing relation information among entities. Although effective, most of these models solely rely on fixed relation representations to obtain answers for different question-related KB subgraphs. Hence, the rich structured information of these subgraphs may be overlooked by the relation representation vectors. Meanwhile, the direction information of reasoning, which has been proven effective for the answer prediction on graphs, has not been fully explored in existing work. To address these challenges, we propose a novel neural model, Relation-updated Direction-guided Answer Selector (RDAS), which converts relations in each subgraph to additional nodes to learn structure information. Additionally, we utilize direction information to enhance the reasoning ability. Experimental results show that our model yields substantial improvements on two widely used datasets.
Relation linking is essential to enable question answering over knowledge bases. Although there are various efforts to improve relation linking performance, the current state-of-the-art methods do not achieve optimal results, therefore, negatively impacting the overall end-to-end question answering performance. In this work, we propose a novel approach for relation linking framing it as a generative problem facilitating the use of pre-trained sequence-to-sequence models. We extend such sequence-to-sequence models with the idea of infusing structured data from the target knowledge base, primarily to enable these models to handle the nuances of the knowledge base. Moreover, we train the model with the aim to generate a structured output consisting of a list of argument-relation pairs, enabling a knowledge validation step. We compared our method against the existing relation linking systems on four different datasets derived from DBpedia and Wikidata. Our method reports large improvements over the state-of-the-art while using a much simpler model that can be easily adapted to different knowledge bases.
Relation extraction is an important task in knowledge acquisition and text understanding. Existing works mainly focus on improving relation extraction by extracting effective features or designing reasonable model structures. However, few works have focused on how to validate and correct the results generated by the existing relation extraction models. We argue that validation is an important and promising direction to further improve the performance of relation extraction. In this paper, we explore the possibility of using question answering as validation. Specifically, we propose a novel question-answering based framework to validate the results from relation extraction models. Our proposed framework can be easily applied to existing relation classifiers without any additional information. We conduct extensive experiments on the popular NYT dataset to evaluate the proposed framework, and observe consistent improvements over five strong baselines.
Knowledge graph question answering is an important technology in intelligent human-robot interaction, which aims at automatically giving answer to human natural language question with the given knowledge graph. For the multi-relation question with higher variety and complexity, the tokens of the question have different priority for the triples selection in the reasoning steps. Most existing models take the question as a whole and ignore the priority information in it. To solve this problem, we propose question-aware memory network for multi-hop question answering, named QA2MN, to update the attention on question timely in the reasoning process. In addition, we incorporate graph context information into knowledge graph embedding model to increase the ability to represent entities and relations. We use it to initialize the QA2MN model and fine-tune it in the training process. We evaluate QA2MN on PathQuestion and WorldCup2014, two representative datasets for complex multi-hop question answering. The result demonstrates that QA2MN achieves state-of-the-art Hits@1 accuracy on the two datasets, which validates the effectiveness of our model.
Existing work on augmenting question answering (QA) models with external knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations efficiently, or lack transparency into the models prediction rationale. In this paper, we propose a novel knowledge-aware approach that equips pre-trained language models (PTLMs) with a multi-hop relational reasoning module, named multi-hop graph relation network (MHGRN). It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs. The proposed reasoning module unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability. We also empirically show its effectiveness and scalability on CommonsenseQA and OpenbookQA datasets, and interpret its behaviors with case studies.
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at https://github.com/siat-nlp/TransDG.