Do you want to publish a course? Click here

Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving

135   0   0.0 ( 0 )
 Added by Zhenhua Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Road-boundary detection is important for autonomous driving. It can be used to constrain autonomous vehicles running on road areas to ensure driving safety. Compared with online road-boundary detection using on-vehicle cameras/Lidars, offline detection using aerial images could alleviate the severe occlusion issue. Moreover, the offline detection results can be directly employed to annotate high-definition (HD) maps. In recent years, deep-learning technologies have been used in offline detection. But there still lacks a publicly available dataset for this task, which hinders the research progress in this area. So in this paper, we propose a new benchmark dataset, named textit{Topo-boundary}, for offline topological road-boundary detection. The dataset contains 25,295 $1000times1000$-sized 4-channel aerial images. Each image is provided with 8 training labels for different sub-tasks. We also design a new entropy-based metric for connectivity evaluation, which could better handle noises or outliers. We implement and evaluate 3 segmentation-based baselines and 5 graph-based baselines using the dataset. We also propose a new imitation-learning-based baseline which is enhanced from our previous work. The superiority of our enhancement is demonstrated from the comparison. The dataset and our-implemented code for the baselines are available at texttt{url{https://tonyxuqaq.github.io/Topo-boundary/}}.



rate research

Read More

Detection of road curbs is an essential capability for autonomous driving. It can be used for autonomous vehicles to determine drivable areas on roads. Usually, road curbs are detected on-line using vehicle-mounted sensors, such as video cameras and 3-D Lidars. However, on-line detection using video cameras may suffer from challenging illumination conditions, and Lidar-based approaches may be difficult to detect far-away road curbs due to the sparsity issue of point clouds. In recent years, aerial images are becoming more and more worldwide available. We find that the visual appearances between road areas and off-road areas are usually different in aerial images, so we propose a novel solution to detect road curbs off-line using aerial images. The input to our method is an aerial image, and the output is directly a graph (i.e., vertices and edges) representing road curbs. To this end, we formulate the problem as an imitation learning problem, and design a novel network and an innovative training strategy to train an agent to iteratively find the road-curb graph. The experimental results on a public dataset confirm the effectiveness and superiority of our method. This work is accompanied with a demonstration video and a supplementary document at https://tonyxuqaq.github.io/iCurb/.
Road curb detection is important for autonomous driving. It can be used to determine road boundaries to constrain vehicles on roads, so that potential accidents could be avoided. Most of the current methods detect road curbs online using vehicle-mounted sensors, such as cameras or 3-D Lidars. However, these methods usually suffer from severe occlusion issues. Especially in highly-dynamic traffic environments, most of the field of view is occupied by dynamic objects. To alleviate this issue, we detect road curbs offline using high-resolution aerial images in this paper. Moreover, the detected road curbs can be used to create high-definition (HD) maps for autonomous vehicles. Specifically, we first predict the pixel-wise segmentation map of road curbs, and then conduct a series of post-processing steps to extract the graph structure of road curbs. To tackle the disconnectivity issue in the segmentation maps, we propose an innovative connectivity-preserving loss (CP-loss) to improve the segmentation performance. The experimental results on a public dataset demonstrate the effectiveness of our proposed loss function. This paper is accompanied with a demonstration video and a supplementary document, which are available at texttt{url{https://sites.google.com/view/cp-loss}}.
With the increasing global popularity of self-driving cars, there is an immediate need for challenging real-world datasets for benchmarking and training various computer vision tasks such as 3D object detection. Existing datasets either represent simple scenarios or provide only day-time data. In this paper, we introduce a new challenging A*3D dataset which consists of RGB images and LiDAR data with significant diversity of scene, time, and weather. The dataset consists of high-density images ($approx~10$ times more than the pioneering KITTI dataset), heavy occlusions, a large number of night-time frames ($approx~3$ times the nuScenes dataset), addressing the gaps in the existing datasets to push the boundaries of tasks in autonomous driving research to more challenging highly diverse environments. The dataset contains $39text{K}$ frames, $7$ classes, and $230text{K}$ 3D object annotations. An extensive 3D object detection benchmark evaluation on the A*3D dataset for various attributes such as high density, day-time/night-time, gives interesting insights into the advantages and limitations of training and testing 3D object detection in real-world setting.
Road extraction is an essential step in building autonomous navigation systems. Detecting road segments is challenging as they are of varying widths, bifurcated throughout the image, and are often occluded by terrain, cloud, or other weather conditions. Using just convolution neural networks (ConvNets) for this problem is not effective as it is inefficient at capturing distant dependencies between road segments in the image which is essential to extract road connectivity. To this end, we propose a Spatial and Interaction Space Graph Reasoning (SPIN) module which when plugged into a ConvNet performs reasoning over graphs constructed on spatial and interaction spaces projected from the feature maps. Reasoning over spatial space extracts dependencies between different spatial regions and other contextual information. Reasoning over a projected interaction space helps in appropriate delineation of roads from other topographies present in the image. Thus, SPIN extracts long-range dependencies between road segments and effectively delineates roads from other semantics. We also introduce a SPIN pyramid which performs SPIN graph reasoning across multiple scales to extract multi-scale features. We propose a network based on stacked hourglass modules and SPIN pyramid for road segmentation which achieves better performance compared to existing methods. Moreover, our method is computationally efficient and significantly boosts the convergence speed during training, making it feasible for applying on large-scale high-resolution aerial images. Code available at: https://github.com/wgcban/SPIN_RoadMapper.git.
This paper presents a novel task together with a new benchmark for detecting generic, taxonomy-free event boundaries that segment a whole video into chunks. Conventional work in temporal video segmentation and action detection focuses on localizing pre-defined action categories and thus does not scale to generic videos. Cognitive Science has known since last century that humans consistently segment videos into meaningful temporal chunks. This segmentation happens naturally, without pre-defined event categories and without being explicitly asked to do so. Here, we repeat these cognitive experiments on mainstream CV datasets; with our novel annotation guideline which addresses the complexities of taxonomy-free event boundary annotation, we introduce the task of Generic Event Boundary Detection (GEBD) and the new benchmark Kinetics-GEBD. Our Kinetics-GEBD has the largest number of boundaries (e.g. 32 of ActivityNet, 8 of EPIC-Kitchens-100) which are in-the-wild, taxonomy-free, cover generic event change, and respect human perception diversity. We view GEBD as an important stepping stone towards understanding the video as a whole, and believe it has been previously neglected due to a lack of proper task definition and annotations. Through experiment and human study we demonstrate the value of the annotations. Further, we benchmark supervised and un-supervised GEBD approaches on the TAPOS dataset and our Kinetics-GEBD. We release our annotations and baseline codes at CVPR21 LOVEU Challenge: https://sites.google.com/view/loveucvpr21.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا