In this paper, we revisit a well-known distributed projected subgradient algorithm which aims to minimize a sum of cost functions with a common set constraint. In contrast to most of existing results, weight matrices of the time-varying multi-agent network are assumed to be more general, i.e., they are only required to be row stochastic instead of doubly stochastic. We focus on analyzing convergence properties of this algorithm under general graphs. We first show that there generally exists a graph sequence such that the algorithm is not convergent when the network switches freely within finitely many general graphs. Then to guarantee the convergence of this algorithm under any uniformly jointly strongly connected general graph sequence, we provide a necessary and sufficient condition, i.e., the intersection of optimal solution sets to all local optimization problems is not empty. Furthermore, we surprisingly find that the algorithm is convergent for any periodically switching general graph sequence, and the converged solution minimizes a weighted sum of local cost functions, where the weights depend on the Perron vectors of some product matrices of the underlying periodically switching graphs. Finally, we consider a slightly broader class of quasi-periodically switching graph sequences, and show that the algorithm is convergent for any quasi-periodic graph sequence if and only if the network switches between only two graphs.