Do you want to publish a course? Click here

A categorical framework for congruence of applicative bisimilarity in higher-order languages

77   0   0.0 ( 0 )
 Added by Tom Hirschowitz
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Applicative bisimilarity is a coinductive characterisation of observational equivalence in call-by-name lambda-calculus, introduced by Abramsky in 1990. Howe (1989) gave a direct proof that it is a congruence. We propose a categorical framework for specifying operational semantics, in which we prove that (an abstract analogue of) applicative bisimilarity is automatically a congruence. Example instances include standard applicative bisimilarity in call-by-name and call-by-value $lambda$-calculus, as well as in a simple non-deterministic variant.



rate research

Read More

We prove that rooted divergence-preserving branching bisimilarity is a congruence for the process specification language consisting of nil, action prefix, choice, and the recursion construct.
97 - Francesco Gavazzo 2018
This paper studies the quantitative refinements of Abramskys applicative similarity and bisimilarity in the context of a generalisation of Fuzz, a call-by-value $lambda$-calculus with a linear type system that can express programs sensitivity, enriched with algebraic operations emph{`a la} Plotkin and Power. To do so a general, abstract framework for studying behavioural relations taking values over quantales is defined according to Lawveres analysis of generalised metric spaces. Barrs notion of relator (or lax extension) is then extended to quantale-valued relations adapting and extending results from the field of monoidal topology. Abstract notions of quantale-valued effectful applicative similarity and bisimilarity are then defined and proved to be a compatible generalised metric (in the sense of Lawvere) and pseudometric, respectively, under mild conditions.
Higher-order processes with parameterization are capable of abstraction and application (migrated from the lambda-calculus), and thus are computationally more expressive. For the minimal higher-order concurrency, it is well-known that the strong bisimilarity (i.e., the strong bisimulation equality) is decidable in absence of parameterization. By contrast, whether the strong bisimilarity is still decidable for parameterized higher-order processes remains unclear. In this paper, we focus on this issue. There are basically two kinds of parameterization: one on names and the other on processes. We show that the strong bisimilarity is indeed decidable for higher-order processes equipped with both kinds of parameterization. Then we demonstrate how to adapt the decision approach to build an axiom system for the strong bisimilarity. On top of these results, we provide an algorithm for the bisimilarity checking.
Floyds Operator Precedence (OP) languages are a deterministic context-free family having many desirable properties. They are locally and parallely parsable, and languages having a compatible structure are closed under Boolean operations, concatenation and star; they properly include the family of Visibly Pushdown (or Input Driven) languages. OP languages are based on three relations between any two consecutive terminal symbols, which assign syntax structure to words. We extend such relations to k-tuples of consecutive terminal symbols, by using the model of strictly locally testable regular languages of order k at least 3. The new corresponding class of Higher-order Operator Precedence languages (HOP) properly includes the OP languages, and it is still included in the deterministic (also in reverse) context free family. We prove Boolean closure for each subfamily of structurally compatible HOP languages. In each subfamily, the top language is called max-language. We show that such languages are defined by a simple cancellation rule and we prove several properties, in particular that max-languages make an infinite hierarchy ordered by parameter k. HOP languages are a candidate for replacing OP languages in the various applications where they have have been successful though sometimes too restrictive.
The problem of model checking procedural programs has fostered much research towards the definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested Words, such as CaRet and NWTL. Recently, the logic OPTL was introduced, based on the class of Operator Precedence Languages (OPLs), more powerful than Nested Words. We define the new OPL-based logic POTL and prove its FO-completeness. POTL improves on NWTL by enabling the formulation of requirements involving pre/post-conditions, stack inspection, and others in the presence of exception-like constructs. It improves on OPTL too, which instead we show not to be FO-complete; it also allows to express more easily stack inspection and function-local properties. In a companion paper we report a model checking procedure for POTL and experimental results based on a prototype tool developed therefor. For completeness a short summary of this complementary result is provided in this paper too.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا