Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech Recognition


Abstract in English

End-to-end neural network models achieve improved performance on various automatic speech recognition (ASR) tasks. However, these models perform poorly on edge hardware due to large memory and computation requirements. While quantizing model weights and/or activations to low-precision can be a promising solution, previous research on quantizing ASR models is limited. Most quantization approaches use floating-point arithmetic during inference; and thus they cannot fully exploit integer processing units, which use less power than their floating-point counterparts. Moreover, they require training/validation data during quantization for finetuning or calibration; however, this data may not be available due to security/privacy concerns. To address these limitations, we propose Q-ASR, an integer-only, zero-shot quantization scheme for ASR models. In particular, we generate synthetic data whose runtime statistics resemble the real data, and we use it to calibrate models during quantization. We then apply Q-ASR to quantize QuartzNet-15x5 and JasperDR-10x5 without any training data, and we show negligible WER change as compared to the full-precision baseline models. For INT8-only quantization, we observe a very modest WER degradation of up to 0.29%, while we achieve up to 2.44x speedup on a T4 GPU. Furthermore, Q-ASR exhibits a large compression rate of more than 4x with small WER degradation.

Download