Do you want to publish a course? Click here

Dark Modes in Non-Markovian Linear Quantum Systems

155   0   0.0 ( 0 )
 Added by Kun Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this note, we are concerned with dark modes in a class of non-Markovian open quantum systems. Based on a microscopic model, a time-convoluted linear quantum stochastic differential equation and an output equation are derived to describe the system dynamics. The definition of dark modes is given building on the input-output structure of the system. Then, we present a necessary and sufficient condition for the existence of dark modes. Also, the problem of dark mode synthesis via Hamiltonian engineering is constructively solved and an example is presented to illustrate our results.



rate research

Read More

Enabled by rapidly developing quantum technologies, it is possible to network quantum systems at a much larger scale in the near future. To deal with non-Markovian dynamics that is prevalent in solid-state devices, we propose a general transfer function based framework for modeling linear quantum networks, in which signal flow graphs are applied to characterize the network topology by flow of quantum signals. We define a noncommutative ring $mathbb{D}$ and use its elements to construct Hamiltonians, transformations and transfer functions for both active and passive systems. The signal flow graph obtained for direct and indirect coherent quantum feedback systems clearly show the feedback loop via bidirectional signal flows. Importantly, the transfer function from input to output field is derived for non-Markovian quantum systems with colored inputs, from which the Markovian input-output relation can be easily obtained as a limiting case. Moreover, the transfer function possesses a symmetry structure that is analogous to the well-know scattering transformation in sd picture. Finally, we show that these transfer functions can be integrated to build complex feedback networks via interconnections, serial products and feedback, which may include either direct or indirect coherent feedback loops, and transfer functions between quantum signal nodes can be calculated by the Riegles matrix gain rule. The theory paves the way for modeling, analyzing and synthesizing non-Markovian linear quantum feedback networks in the frequency-domain.
Non-Markovian reduced dynamics of an open system is investigated. In the case the initial state of the reservoir is the vacuum state, an approximation is introduced which makes possible to construct a reduced dynamics which is completely positive.
We review the most recent developments in the theory of open quantum systems focusing on situations in which the reservoir memory effects, due to long-lasting and non-negligible correlations between system and environment, play a crucial role. These systems are often referred to as non-Markovian systems. After a brief summary of different measures of non-Markovianity that have been introduced over the last few years we restrict our analysis to the investigation of information flow between system and environment. Within this framework we introduce an important application of non-Markovianity, namely its use as a quantum probe of complex quantum systems. To illustrate this point we consider quantum probes of ultracold gases, spin chains, and trapped ion crystals and show how properties of these systems can be extracted by means of non-Markovianity measures.
The rapidly developing quantum technologies have put forward a requirement to precisely control and measure temperature of microscopic matters at quantum level. Many quantum thermometry schemes have been proposed. However, precisely measuring low temperature is still extremely challenging because the sensing errors obtained in these schemes tend to divergence with decreasing temperature. Using a continuous-variable system as a thermometer, we propose a non-Markovian quantum thermometry to measure the temperature of a quantum reservoir. A mechanism to make the sensing error $delta T$ scale with the temperature $T$ as $delta Tsimeq T$ in the full-temperature regime is discovered. Our analysis reveals that it is the quantum criticality of the total thermometer-reservoir system that causes this enhanced sensitivity. Solving the long-standing and challenging error-divergence problem, our result gives an efficient way to precisely measure the low temperature of quantum systems.
79 - Bassano Vacchini 2019
The study of quantum dynamics featuring memory effects has always been a topic of interest within the theory of open quantum system, which is concerned about providing useful conceptual and theoretical tools for the description of the reduced dynamics of a system interacting with an external environment. Definitions of non-Markovian processes have been introduced trying to capture the notion of memory effect by studying features of the quantum dynamical map providing the evolution of the system states, or changes in the distinguishability of the system states themselves. We introduce basic notions in the framework of open quantum systems, stressing in particular analogies and differences with models used for introducing modifications of quantum mechanics which should help in dealing with the measurement problem. We further discuss recent developments in the treatment of non-Markovian processes and their role in considering more general modifications of quantum mechanics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا