Do you want to publish a course? Click here

Intelligent Reflecting Surface for Wireless Communication Security and Privacy

198   0   0.0 ( 0 )
 Added by Shihao Yan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Intelligent reflection surface (IRS) is emerging as a promising technique for future wireless communications. Considering its excellent capability in customizing the channel conditions via energy-focusing and energy-nulling, it is an ideal technique for enhancing wireless communication security and privacy, through the theories of physical layer security and covert communications, respectively. In this article, we first present some results on applying IRS to improve the average secrecy rate in wiretap channels, to enable perfect communication covertness, and to deliberately create extra randomness in wireless propagations for hiding active wireless transmissions. Then, we identify multiple challenges for future research to fully unlock the benefits offered by IRS in the context of physical layer security and covert communications. With the aid of extensive numerical studies, we demonstrate the necessity of designing the amplitudes of the IRS elements in wireless communications with the consideration of security and privacy, where the optimal values are not always $1$ as commonly adopted in the literature. Furthermore, we reveal the tradeoff between the achievable secrecy performance and the estimation accuracy of the IRSs channel state information (CSI) at both the legitimate and malicious users, which presents the fundamental resource allocation challenge in the context of IRS-aided physical layer security. Finally, a passive channel estimation methodology exploiting deep neural networks and scene images is discussed as a potential solution to enabling CSI availability without utilizing resource-hungry pilots. This methodology serves as a visible pathway to significantly improving the covert communication rate in IRS-aided wireless networks.



rate research

Read More

105 - Rui Wang , Zhe Xing , Erwu Liu 2021
Intelligent reflecting surface (IRS) is a novel burgeoning concept, which possesses advantages in enhancing wireless communication and user localization, while maintaining low hardware cost and energy consumption. Herein, we establish an IRS-aided mmWave-MIMO based joint localization and communication system (IMM-JLCS), and probe into its performance evaluation and optimization design. Specifically, first, we provide the signal, channel and estimation error models, and contrive the working process of the IMM-JLCS in detail. Then, by configuring appropriate IRS phase shifts, we derive the closed-form expressions of the Cramer-Rao Lower Bound (CRLB) of the position/orientation estimation errors and the effective achievable data rate (EADR), with respect to the time allocation ratio of the beam alignment and localization stage (BALS). Subsequently, we investigate the trade-off between the two performance metrics, for which we propose a joint optimization algorithm. Finally, we carry out simulations and comparisons to view the trade-off and validate the effectiveness of the proposed algorithm, in the presence of distinct levels of estimation uncertainty and user mobility. Our results demonstrate that the proposed algorithm can find the joint optimal solution for the position/orientation estimation accuracy and EADR, with its optimization performance being robust to slight localization or channel estimation errors and user mobility.
103 - Chao Feng , Haiquan Lu , Yong Zeng 2021
Intelligent reflecting surface (IRS) is a promising technology for wireless communications, thanks to its potential capability to engineer the radio environment. However, in practice, such an envisaged benefit is attainable only when the passive IRS is of a sufficiently large size, for which the conventional uniform plane wave (UPW)-based channel model may become inaccurate. In this paper, we pursue a new channel modelling and performance analysis for wireless communications with extremely large-scale IRS (XL-IRS). By taking into account the variations in signals amplitude and projected aperture across different reflecting elements, we derive both lower- and upper-bounds of the received signal-to-noise ratio (SNR) for the general uniform planar array (UPA)-based XL-IRS. Our results reveal that, instead of scaling quadratically with the increased number of reflecting elements M as in the conventional UPW model, the SNR under the more practically applicable non-UPW model increases with M only with a diminishing return and gets saturated eventually. To gain more insights, we further study the special case of uniform linear array (ULA)-based XL-IRS, for which a closed-form SNR expression in terms of the IRS size and transmitter/receiver location is derived. This result shows that the SNR mainly depends on the two geometric angles formed by the transmitter/receiver locations with the IRS, as well as the boundary points of the IRS. Numerical results validate our analysis and demonstrate the importance of proper channel modelling for wireless communications aided by XL-IRS.
164 - Ming-Min Zhao , An Liu , Rui Zhang 2020
In intelligent reflecting surface (IRS) aided wireless communication systems, channel state information (CSI) is crucial to achieve its promising passive beamforming gains. However, CSI errors are inevitable in practice and generally correlated over the IRS reflecting elements due to the limited training with discrete phase shifts, which degrade the data transmission rate and reliability. In this paper, we focus on investigating the effect of CSI errors to the outage performance in an IRS-aided multiuser downlink communication system. Specifically, we aim to jointly optimize the active transmit precoding vectors at the access point (AP) and passive discrete phase shifts at the IRS to minimize the APs transmit power, subject to the constraints on the maximum CSI-error induced outage probability for the users. First, we consider the single-user case and derive the users outage probability in terms of the mean signal power (MSP) and variance of the received signal at the user. Since there is a trade-off in tuning these two parameters to minimize the outage probability, we propose to maximize their weighted sum with the optimal weight found by one-dimensional search. Then, for the general multiuser case, since the users outage probabilities are difficult to obtain in closed-form due to the inter-user interference, we propose a novel constrained stochastic successive convex approximation (CSSCA) algorithm, which replaces the non-convex outage probability constraints with properly designed convex surrogate approximations. Simulation results verify the effectiveness of the proposed robust beamfoming algorithms and show their significant performance improvement over various benchmark schemes.
This work examines the performance gain achieved by deploying an intelligent reflecting surface (IRS) in covert communications. To this end, we formulate the joint design of the transmit power and the IRS reflection coefficients by taking into account the communication covertness for the cases with global channel state information (CSI) and without a wardens instantaneous CSI. For the case of global CSI, we first prove that perfect covertness is achievable with the aid of the IRS even for a single-antenna transmitter, which is impossible without an IRS. Then, we develop a penalty successive convex approximation (PSCA) algorithm to tackle the design problem. Considering the high complexity of the PSCA algorithm, we further propose a low-complexity two-stage algorithm, where analytical expressions for the transmit power and the IRSs reflection coefficients are derived. For the case without the wardens instantaneous CSI, we first derive the covertness constraint analytically facilitating the optimal phase shift design. Then, we consider three hardware-related constraints on the IRSs reflection amplitudes and determine their optimal designs together with the optimal transmit power. Our examination shows that significant performance gain can be achieved by deploying an IRS into covert communications.
This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we advocate a novel protocol for the uplink communication in the IRS-assisted massive MIMO systems. Under this protocol, the IRS reflection coefficients are optimized based on the channel covariance matrices, which are generally fixed for many coherence blocks, to boost the long-term performance. Then, given the IRS reflecting coefficients, the BS beamforming vectors are designed in each coherence block based on the effective channel of each user, which is the superposition of its direct and reflected user-IRS-BS channels, to improve the instantaneous performance. Since merely the user effective channels are estimated in each coherence block, the training overhead of this protocol is the same as that in the legacy wireless systems without IRSs. Moreover, in the asymptotic regime that the numbers of IRS elements and BS antennas both go to infinity with a fixed ratio, we manage to first characterize the minimum mean-squared error (MMSE) estimators of the user effective channels and then quantify the closed-form user achievable rates as functions of channel covariance matrices with channel training overhead and estimation error taken into account. Interestingly, it is shown that the properties of channel hardening and favorable propagation still hold for the user effective channels, and satisfactory user rates are thus achievable even if simple BS beamforming solutions, e.g., maximal-ratio combining, are employed. Finally, thanks to the rate characterization, we design a low-complexity algorithm to optimize the IRS reflection coefficients based on channel covariance matrices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا