Do you want to publish a course? Click here

Rapidly-Declining Hostless Type Ia Supernova KSP-OT-201509b from the KMTNet Supernova Program: Transitional Nature and Constraint on $^{56}$Ni Distribution and Progenitor Type

95   0   0.0 ( 0 )
 Added by Dae-Sik Moon
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the early discovery and multi-color ($BVI$) high-cadence light curve analyses of a rapidly-declining sub-Chandrasekhar Type Ia supernova KSP-OT-201509b (= AT2015cx) from the KMTNet Supernova Program. The Phillips parameter and color stretch parameter of KSP-OT-201509b (= AT2015cx) are $Delta$$M_{B,15}$ $simeq$ 1.62 mag and $s_{BV}$ $simeq$ 0.54, respectively, at an inferred redshift of 0.072. These, together with other measured parameters (such as the strength of the secondary $I$-band peak, colors and luminosity), identify the source to be a rapidly-declining Type Ia of transitional nature that is closer to Branch Normal than 91bg-like. Its early light curve evolution and bolometric luminosity are consistent with those of homologously expanding ejecta powered by radioactive decay and a Type Ia SN explosion with 0.32 $pm$ 0.01 $M_{odot}$ of synthesized $^{56}$Ni mass, 0.84 $pm$ 0.12 $M_{odot}$ of ejecta mass and (0.61 $pm$ 0.14) $times$ 10$^{51}$ erg of ejecta kinetic energy. While its $B-V$ and $V-I$ colors evolve largely synchronously with the changes in the $I$-band light curve as found in other supernovae, we also find the presence of an early redward evolution in $V-I$ prior to --10 days since peak. The bolometric light curve of the source is compatible with a stratified $^{56}$Ni distribution extended to shallow layers of the exploding progenitor. Comparisons between the observed light curves and those predicted from ejecta-companion interactions clearly disfavor Roche Lobe-filling companion stars at large separation distances, thus supporting a double-degenerate scenario for its origin. The lack of any apparent host galaxy in our deep stack images reaching a sensitivity limit of $sim$ 28 $rm mag;arcsec^{-2}$ makes KSP-OT-201509b a hostless Type Ia supernova and offers new insights into supernova host galaxy environments.



rate research

Read More

We present the discovery and the photometric and spectroscopic study of H-rich Type II supernova (SN) KSP-SN-2016kf (SN2017it) observed in the KMTNet Supernova Program in the outskirts of a small irregular galaxy at $zsimeq0.043$ within a day from the explosion. Our high-cadence, multi-color ($BVI$) light curves of the SN show that it has a very long rise time ($t_text{rise}simeq 20$ days in $V$ band), a moderately luminous peak ($M_Vsimeq -$17.6 mag), a notably luminous and flat plateau ($M_Vsimeq -$17.4 mag and decay slope $ssimeq0.53$ mag per 100 days), and an exceptionally bright radioactive tail. Using the color-dependent bolometric correction to the light curves, we estimate the $^{56}$Ni mass powering the observed radioactive tail to be $0.10pm0.01$ M$_odot$, making it a H-rich Type II SN with one of the largest $^{56}$Ni masses observed to date. The results of our hydrodynamic simulations of the light curves constrain the mass and radius of the progenitor at the explosion to be $sim$15 M$_odot$ (evolved from a star with an initial mass of $sim$ 18.8 M$_odot$) and $sim1040$ R$_odot$, respectively, with the SN explosion energy of $sim 1.3times 10^{51}$ erg s$^{-1}$. The above-average mass of the KSP-SN-2016kf progenitor, together with its low metallicity $ Z/Z_odot simeq0.1-0.4$ obtained from spectroscopic analysis, is indicative of a link between the explosion of high-mass red supergiants and their low-metallicity environment. The early part of the observed light curves shows the presence of excess emission above what is predicted in model calculations, suggesting there is interaction between the ejecta and circumstellar material. We further discuss the implications of the high progenitor initial mass and low-metallicity environment of KSP-SN-2016kf on our understanding of the origin of Type II SNe.
We present a multi-color, high-cadence photometric study of a distant dwarf nova KSP-OT-201611a discovered by the Korea Microlensing Telescope Network Supernova Program. From October 2016 to May 2017, two outbursts, which comprises a super/long outburst followed by a normal/short outburst separated by $sim$91 days, were detected in the $BVI$ bands. The shapes and amplitudes of the outbursts reveal the nature of KSP-OT-201611a to be an SU UMa- or U Gem-type dwarf nova. Color variations of periodic humps in the super/long outburst possibly indicate that KSP-OT-201611a is an SU UMa-type dwarf nova. The super and normal outbursts show distinctively different color evolutions during the outbursts due most likely to the difference of time when the cooling wave is formed in the accretion disk. The outburst peak magnitudes and the orbital period of the dwarf nova indicate that it is at a large Galactocentric distance ($sim$13.8 kpc) and height ($sim$1.7 kpc) from the Galactic plane. KSP-OT-201611a, therefore, may provide a rare opportunity to study the accretion disk process of Population II dwarf novae.
Only a few cases of type Ic supernovae (SNe) with high-velocity ejecta have been discovered and studied. Here we present our analysis of radio and X-ray observations of a Type Ic SN, PTF12gzk. The radio emission rapidly declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (~0.3c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ~10 than the CSM around normal Type Ic SNe. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the VLA (improved sensitivity and dynamic scheduling), that are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions, as well as strong clues about the nature of their progenitor stars.
We present an early-phase $g$-band light curve and visual-wavelength spectra of the normal Type Ia supernova (SN) 2013gy. The light curve is constructed by determining the appropriate S-corrections to transform KAIT natural-system $B$- and $V$-band photometry and Carnegie Supernova Project natural-system $g$-band photometry to the Pan-STARRS1 $g$-band natural photometric system. A Markov Chain Monte Carlo calculation provides a best-fit single power-law function to the first ten epochs of photometry described by an exponent of $2.16^{+0.06}_{-0.06}$ and a time of first light of MJD 56629.4$^{+0.1}_{-0.1}$, which is $1.93^{+0.12}_{-0.13}$ days (i.e., $<48$~hr) before the discovery date (2013 December 4.84 UT) and $-19.10^{+0.12}_{-0.13}$ days before the time of $B$-band maximum (MJD 56648.5$pm0.1$). The estimate of the time of first light is consistent with the explosion time inferred from the evolution of the Si II $lambda$6355 Doppler velocity. Furthermore, discovery photometry and previous nondetection limits enable us to constrain the companion radius down to $R_c leq 4,R_{odot}$. In addition to our early-time constraints, we use a deep +235 day nebular-phase spectrum from Magellan/IMACS to place a stripped H-mass limit of $< 0.018,M_{odot}$. Combined, these limits effectively rule out H-rich nondegenerate companions.
We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U, B, and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 solar radii from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon absorption up through day -13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا