No Arabic abstract
As part of a programme to develop parton showers with controlled logarithmic accuracy, we consider the question of collinear spin correlations within the PanScales family of parton showers. We adapt the well-known Collins-Knowles spin-correlation algorithm to PanScales antenna and dipole showers, using an approach with similarities to that taken by Richardson and Webster. To study the impact of spin correlations, we develop Lund-declustering based observables that are sensitive to spin-correlation effects both within and between jets and extend the MicroJets collinear single-logarithmic resummation code to include spin correlations. Together with a 3-point energy correlation observable proposed recently by Chen, Moult and Zhu, this provides a powerful set of constraints for validating the logarithmic accuracy of our shower results. The new observables and their resummation further open the pathway to phenomenological studies of these important quantum mechanical effects.
We present a formalism for a fully coherent QED parton shower. The complete multipole structure of photonic radiation is incorporated in a single branching kernel. The regular on-shell 2 to 3 kinematic picture is kept intact by dividing the radiative phase space into sectors, allowing for a definition of the ordering variable that is similar to QCD antenna showers. A modified version of the Sudakov veto algorithm is discussed that increases performance at the cost of the introduction of weighted events. Due to the absence of a soft singularity, the formalism for photon splitting is very similar to the QCD analogon of gluon splitting. However, since no color structure is available to guide the selection of a spectator, a weighted selection procedure from all available spectators is introduced.
We study a parton shower description, based on a dipole picture, of the final state in electron-positron annihilation. In such a shower, the distribution function describing the inclusive probability to find a quark with a given energy depends on the shower evolution time. Starting from the exclusive evolution equation for the shower, we derive an equation for the evolution of the inclusive quark energy distribution in the limit of strong ordering in shower evolution time of the successive parton splittings. We find that, as expected, this is the DGLAP equation. This paper is a response to a recent paper of Dokshitzer and Marchesini that raised troubling issues about whether a dipole based shower could give the DGLAP equation for the quark energy distribution.
We derive a new method for initial-state collinear showering in Monte-Carlo event generators which is based on the use of unintegrated parton correlation functions. Combined with a previously derived method for final-state showering, the method solves the problem of treating both the hard scattering and the evolution kernels to be used in arbitrarily non-leading order. Although we only treat collinear showering, so that further extensions are needed for QCD, we have discovered several new results: (1) It is better to generate exact parton kinematics in the hard scattering rather than with the subsequent parton showering, and similarly at each step of the showering. (2) Parton showering is then done conditionally on the exact energy-momentum of the initiating parton. (3) We obtain a factorization for structure functions in terms of parton correlation functions so that parton kinematics can be treated exactly from the beginning. (4) We obtain two factorization properties for parton correlation functions, one in terms of ordinary parton densities and one, suitable for event generation, in terms of parton correlation functions themselves.
We are presenting here the new formulae for Bose-Einstein correlations (BEC) which contain effects of final state interactions (FSI) of both strong (in $s$-wave) and electromagnetic origin. We demonstrate the importance of FSI in BEC by analysing data for $e^+e^-$ annihilation and for heavy collisions. The inclusion of FSI results in the practical elimination (at least in $e^+e^-$ data) of the so called degree of coherence parameter $lambda$ (which becomes equal unity) and the long range parameter $gamma$ (which is now equal zero).
A Monte-Carlo event-generator has been developed which is dedicated to simulate electron-positron annihilations. Especially a new approach for the combination of matrix elements and parton showers ensures the independence of the hadronization parameters from the CMS energy. This enables for the first time the description of multijet-topologies, e.g. four jet angles, over a wide range of energy, without changing any parameter of the model. Covering all processes of the standard model our simulator is capable to describe experiments at present and future accelerators, i.e. the LEP collider and a possible Next Linear Collider(NLC).