Do you want to publish a course? Click here

Robustifying Conditional Portfolio Decisions via Optimal Transport

153   0   0.0 ( 0 )
 Added by Viet Anh Nguyen
 Publication date 2021
  fields Financial
and research's language is English




Ask ChatGPT about the research

We propose a data-driven portfolio selection model that integrates side information, conditional estimation and robustness using the framework of distributionally robust optimization. Conditioning on the observed side information, the portfolio manager solves an allocation problem that minimizes the worst-case conditional risk-return trade-off, subject to all possible perturbations of the covariate-return probability distribution in an optimal transport ambiguity set. Despite the non-linearity of the objective function in the probability measure, we show that the distributionally robust portfolio allocation with side information problem can be reformulated as a finite-dimensional optimization problem. If portfolio decisions are made based on either the mean-variance or the mean-Conditional Value-at-Risk criterion, the resulting reformulation can be further simplified to second-order or semi-definite cone programs. Empirical studies in the US and Chinese equity markets demonstrate the advantage of our integrative framework against other benchmarks.



rate research

Read More

A new approach in stochastic optimization via the use of stochastic gradient Langevin dynamics (SGLD) algorithms, which is a variant of stochastic gradient decent (SGD) methods, allows us to efficiently approximate global minimizers of possibly complicated, high-dimensional landscapes. With this in mind, we extend here the non-asymptotic analysis of SGLD to the case of discontinuous stochastic gradients. We are thus able to provide theoretical guarantees for the algorithms convergence in (standard) Wasserstein distances for both convex and non-convex objective functions. We also provide explicit upper estimates of the expected excess risk associated with the approximation of global minimizers of these objective functions. All these findings allow us to devise and present a fully data-driven approach for the optimal allocation of weights for the minimization of CVaR of portfolio of assets with complete theoretical guarantees for its performance. Numerical results illustrate our main findings.
The paper predicts an Efficient Market Property for the equity market, where stocks, when denominated in units of the growth optimal portfolio (GP), have zero instantaneous expected returns. Well-diversified equity portfolios are shown to approximate the GP, which explains the well-observed good performance of equally weighted portfolios. The proposed hierarchically weighted index (HWI) is shown to be an even better proxy of the GP. It sets weights equal within industrial and geographical groupings of stocks. When using the HWI as proxy of the GP the Efficient Market Property cannot be easily rejected and appears to be very robust.
We study a static portfolio optimization problem with two risk measures: a principle risk measure in the objective function and a secondary risk measure whose value is controlled in the constraints. This problem is of interest when it is necessary to consider the risk preferences of two parties, such as a portfolio manager and a regulator, at the same time. A special case of this problem where the risk measures are assumed to be coherent (positively homogeneous) is studied recently in a joint work of the author. The present paper extends the analysis to a more general setting by assuming that the two risk measures are only quasiconvex. First, we study the case where the principal risk measure is convex. We introduce a dual problem, show that there is zero duality gap between the portfolio optimization problem and the dual problem, and finally identify a condition under which the Lagrange multiplier associated to the dual problem at optimality gives an optimal portfolio. Next, we study the general case without the convexity assumption and show that an approximately optimal solution with prescribed optimality gap can be achieved by using the well-known bisection algorithm combined with a duality result that we prove.
We study the Markowitz portfolio selection problem with unknown drift vector in the multidimensional framework. The prior belief on the uncertain expected rate of return is modeled by an arbitrary probability law, and a Bayesian approach from filtering theory is used to learn the posterior distribution about the drift given the observed market data of the assets. The Bayesian Markowitz problem is then embedded into an auxiliary standard control problem that we characterize by a dynamic programming method and prove the existence and uniqueness of a smooth solution to the related semi-linear partial differential equation (PDE). The optimal Markowitz portfolio strategy is explicitly computed in the case of a Gaussian prior distribution. Finally, we measure the quantitative impact of learning, updating the strategy from observed data, compared to non-learning, using a constant drift in an uncertain context, and analyze the sensitivity of the value of information w.r.t. various relevant parameters of our model.
This paper studies a continuous-time market {under stochastic environment} where an agent, having specified an investment horizon and a target terminal mean return, seeks to minimize the variance of the return with multiple stocks and a bond. In the considered model firstly proposed by [3], the mean returns of individual assets are explicitly affected by underlying Gaussian economic factors. Using past and present information of the asset prices, a partial-information stochastic optimal control problem with random coefficients is formulated. Here, the partial information is due to the fact that the economic factors can not be directly observed. Via dynamic programming theory, the optimal portfolio strategy can be constructed by solving a deterministic forward Riccati-type ordinary differential equation and two linear deterministic backward ordinary differential equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا