No Arabic abstract
Weakly-supervised temporal action localization (WS-TAL) aims to localize actions in untrimmed videos with only video-level labels. Most existing models follow the localization by classification procedure: locate temporal regions contributing most to the video-level classification. Generally, they process each snippet (or frame) individually and thus overlook the fruitful temporal context relation. Here arises the single snippet cheating issue: hard snippets are too vague to be classified. In this paper, we argue that learning by comparing helps identify these hard snippets and we propose to utilize snippet Contrastive learning to Localize Actions, CoLA for short. Specifically, we propose a Snippet Contrast (SniCo) Loss to refine the hard snippet representation in feature space, which guides the network to perceive precise temporal boundaries and avoid the temporal interval interruption. Besides, since it is infeasible to access frame-level annotations, we introduce a Hard Snippet Mining algorithm to locate the potential hard snippets. Substantial analyses verify that this mining strategy efficaciously captures the hard snippets and SniCo Loss leads to more informative feature representation. Extensive experiments show that CoLA achieves state-of-the-art results on THUMOS14 and ActivityNet v1.2 datasets. CoLA code is publicly available at https://github.com/zhang-can/CoLA.
Temporal Action Localization (TAL) in untrimmed video is important for many applications. But it is very expensive to annotate the segment-level ground truth (action class and temporal boundary). This raises the interest of addressing TAL with weak supervision, namely only video-level annotations are available during training). However, the state-of-the-art weakly-supervised TAL methods only focus on generating good Class Activation Sequence (CAS) over time but conduct simple thresholding on CAS to localize actions. In this paper, we first develop a novel weakly-supervised TAL framework called AutoLoc to directly predict the temporal boundary of each action instance. We propose a novel Outer-Inner-Contrastive (OIC) loss to automatically discover the needed segment-level supervision for training such a boundary predictor. Our method achieves dramatically improved performance: under the IoU threshold 0.5, our method improves mAP on THUMOS14 from 13.7% to 21.2% and mAP on ActivityNet from 7.4% to 27.3%. It is also very encouraging to see that our weakly-supervised method achieves comparable results with some fully-supervised methods.
Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and location-insensitive properties of actions, and embodies them into a self-augmented learning framework to improve the weakly supervised action localization performance. To be specific, we propose a novel two-branch network architecture with intra/inter-action shuffling, referred to as ActShufNet. The intra-action shuffling branch lays out a self-supervised order prediction task to augment the video representation with inner-video relevance, whereas the inter-action shuffling branch imposes a reorganizing strategy on the existing action contents to augment the training set without resorting to any external resources. Furthermore, the global-local adversarial training is presented to enhance the models robustness to irrelevant noises. Extensive experiments are conducted on three benchmark datasets, and the results clearly demonstrate the efficacy of the proposed method.
Weakly-supervised temporal action localization aims to learn detecting temporal intervals of action classes with only video-level labels. To this end, it is crucial to separate frames of action classes from the background frames (i.e., frames not belonging to any action classes). In this paper, we present a new perspective on background frames where they are modeled as out-of-distribution samples regarding their inconsistency. Then, background frames can be detected by estimating the probability of each frame being out-of-distribution, known as uncertainty, but it is infeasible to directly learn uncertainty without frame-level labels. To realize the uncertainty learning in the weakly-supervised setting, we leverage the multiple instance learning formulation. Moreover, we further introduce a background entropy loss to better discriminate background frames by encouraging their in-distribution (action) probabilities to be uniformly distributed over all action classes. Experimental results show that our uncertainty modeling is effective at alleviating the interference of background frames and brings a large performance gain without bells and whistles. We demonstrate that our model significantly outperforms state-of-the-art methods on the benchmarks, THUMOS14 and ActivityNet (1.2 & 1.3). Our code is available at https://github.com/Pilhyeon/WTAL-Uncertainty-Modeling.
Weakly-supervised Temporal Action Localization (WS-TAL) methods learn to localize temporal starts and ends of action instances in a video under only video-level supervision. Existing WS-TAL methods rely on deep features learned for action recognition. However, due to the mismatch between classification and localization, these features cannot distinguish the frequently co-occurring contextual background, i.e., the context, and the actual action instances. We term this challenge action-context confusion, and it will adversely affect the action localization accuracy. To address this challenge, we introduce a framework that learns two feature subspaces respectively for actions and their context. By explicitly accounting for action visual elements, the action instances can be localized more precisely without the distraction from the context. To facilitate the learning of these two feature subspaces with only video-level categorical labels, we leverage the predictions from both spatial and temporal streams for snippets grouping. In addition, an unsupervised learning task is introduced to make the proposed module focus on mining temporal information. The proposed approach outperforms state-of-the-art WS-TAL methods on three benchmarks, i.e., THUMOS14, ActivityNet v1.2 and v1.3 datasets.
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and relieve background interference. In this paper, we present an Action Unit Memory Network (AUMN) for weakly supervised temporal action localization, which can mitigate the above two challenges by learning an action unit memory bank. In the proposed AUMN, two attention modules are designed to update the memory bank adaptively and learn action units specific classifiers. Furthermore, three effective mechanisms (diversity, homogeneity and sparsity) are designed to guide the updating of the memory network. To the best of our knowledge, this is the first work to explicitly model the action units with a memory network. Extensive experimental results on two standard benchmarks (THUMOS14 and ActivityNet) demonstrate that our AUMN performs favorably against state-of-the-art methods. Specifically, the average mAP of IoU thresholds from 0.1 to 0.5 on the THUMOS14 dataset is significantly improved from 47.0% to 52.1%.