A Novel Approach to Detect Redundant Activity Labels For More Representative Event Logs


Abstract in English

The insights revealed from process mining heavily rely on the quality of event logs. Activities extracted from healthcare information systems with the free-text nature may lead to inconsistent labels. Such inconsistency would then lead to redundancy of activity labels, which refer to labels that have different syntax but share the same behaviours. The identifications of these labels from data-driven process discovery are difficult and rely heavily on resource-intensive human review. Existing work achieves low accuracy either redundant activity labels are in low occurrence frequency or the existence of numerical data values as attributes in event logs. However, these phenomena are commonly observed in healthcare information systems. In this paper, we propose an approach to detect redundant activity labels using control-flow relations and numerical data values from event logs. Natural Language Processing is also integrated into our method to assess semantic similarity between labels, which provides users with additional insights. We have evaluated our approach through synthetic logs generated from the real-life Sepsis log and a case study using the MIMIC-III data set. The results demonstrate that our approach can successfully detect redundant activity labels. This approach can add value to the preprocessing step to generate more representative event logs for process mining tasks in the healthcare domain.

Download