Do you want to publish a course? Click here

Joint Nonanticipative Rate Distortion Function for a Tuple of Random Processes with Individual Fidelity Criteria

203   0   0.0 ( 0 )
 Added by Evagoras Stylianou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The joint nonanticipative rate distortion function (NRDF) for a tuple of random processes with individual fidelity criteria is considered. Structural properties of optimal test channel distributions are derived. Further, for the application example of the joint NRDF of a tuple of jointly multivariate Gaussian Markov processes with individual square-error fidelity criteria, a realization of the reproduction processes which induces the optimal test channel distribution is derived, and the corresponding joint NRDF is characterized. The analysis of the simplest example, of a tuple of scalar correlated Markov processes, illustrates many of the challenging aspects of such problems.



rate research

Read More

In this paper we analyze the joint rate distortion function (RDF), for a tuple of correlated sources taking values in abstract alphabet spaces (i.e., continuous) subject to two individual distortion criteria. First, we derive structural properties of the realizations of the reproduction Random Variables (RVs), which induce the corresponding optimal test channel distributions of the joint RDF. Second, we consider a tuple of correlated multivariate jointly Gaussian RVs, $X_1 : Omega rightarrow {mathbb R}^{p_1}, X_2 : Omega rightarrow {mathbb R}^{p_2}$ with two square-error fidelity criteria, and we derive additional structural properties of the optimal realizations, and use these to characterize the RDF as a convex optimization problem with respect to the parameters of the realizations. We show that the computation of the joint RDF can be performed by semidefinite programming. Further, we derive closed-form expressions of the joint RDF, such that Grays [1] lower bounds hold with equality, and verify their consistency with the semidefinite programming computations.
The objective of this paper is to further investigate various applications of information Nonanticipative Rate Distortion Function (NRDF) by discussing two working examples, the Binary Symmetric Markov Source with parameter $p$ (BSMS($p$)) with Hamming distance distortion, and the multidimensional partially observed Gaussian-Markov source. For the BSMS($p$), we give the solution to the NRDF, and we use it to compute the Rate Loss (RL) of causal codes with respect to noncausal codes. For the multidimensional Gaussian-Markov source, we give the solution to the NRDF, we show its operational meaning via joint source-channel matching over a vector of parallel Gaussian channels, and we compute the RL of causal and zero-delay codes with respect to noncausal codes.
In this paper, we develop {finite-time horizon} causal filters using the nonanticipative rate distortion theory. We apply the {developed} theory to {design optimal filters for} time-varying multidimensional Gauss-Markov processes, subject to a mean square error fidelity constraint. We show that such filters are equivalent to the design of an optimal texttt{{encoder, channel, decoder}}, which ensures that the error satisfies {a} fidelity constraint. Moreover, we derive a universal lower bound on the mean square error of any estimator of time-varying multidimensional Gauss-Markov processes in terms of conditional mutual information. Unlike classical Kalman filters, the filter developed is characterized by a reverse-waterfilling algorithm, which ensures {that} the fidelity constraint is satisfied. The theoretical results are demonstrated via illustrative examples.
The rate-distortion dimension (RDD) of an analog stationary process is studied as a measure of complexity that captures the amount of information contained in the process. It is shown that the RDD of a process, defined as two times the asymptotic ratio of its rate-distortion function $R(D)$ to $log {1over D}$ as the distortion $D$ approaches zero, is equal to its information dimension (ID). This generalizes an earlier result by Kawabata and Dembo and provides an operational approach to evaluate the ID of a process, which previously was shown to be closely related to the effective dimension of the underlying process and also to the fundamental limits of compressed sensing. The relation between RDD and ID is illustrated for a piecewise constant process.
The rate-distortion-perception function (RDPF; Blau and Michaeli, 2019) has emerged as a useful tool for thinking about realism and distortion of reconstructions in lossy compression. Unlike the rate-distortion function, however, it is unknown whether encoders and decoders exist that achieve the rate suggested by the RDPF. Building on results by Li and El Gamal (2018), we show that the RDPF can indeed be achieved using stochastic, variable-length codes. For this class of codes, we also prove that the RDPF lower-bounds the achievable rate
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا