Do you want to publish a course? Click here

On the multiscale behaviour of stellar activity and rotation of the planet host Kepler-30

88   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kepler-30 is a unique target to study stellar activity and rotation in a young solar-like star accompanied by a compact planetary system. We use about 4 years of high-precision photometry collected by the Kepler mission to investigate the fluctuations caused by photospheric convection, stellar rotation, and starspot evolution as a function of the timescale. Our main goal is to apply methods for the analysis of timeseries to find the timescales of the phenomena that affect the light variations. We correlate those timescales with periodicities in the star as well as in the planetary system. We model the flux rotational modulation induced by active regions using spot modelling and apply the MFDMA in standard and multisca



rate research

Read More

The study of young Sun-like stars is of fundamental importance to understand the magnetic activity and rotational evolution of the Sun. Space-borne photometry by the Kepler telescope provides unprecedented datasets to investigate these phenomena in Sun-like stars. We present a new analysis of the entire Kepler photometric time series of the moderately young Sun-like star Kepler-17 that is accompanied by a transiting hot Jupiter. We applied a maximum-entropy spot model to the long-cadence out-of-transit photometry of the target to derive maps of the starspot filling factor versus the longitude and the time. These maps are compared to the spots occulted during transits to validate our reconstruction and derive information on the latitudes of the starspots. We find two main active longitudes on the photosphere of Kepler-17, one of which has a lifetime of at least $sim 1400$ days, although with a varying level of activity. The latitudinal differential rotation is of solar type, that is, with the equator rotating faster than the poles. We estimate a minimum relative amplitude $Delta Omega/ Omega$ between $sim 0.08 pm 0.05$ and $0.14 pm 0.05$, our determination being affected by the finite lifetime of individual starspots and depending on the adopted spot model parameters. We find marginal evidence of a short-term intermittent activity cycle of $sim 48$ days and an indication of a longer cycle of $400-600$ days characterized by an equatorward migration of the mean latitude of the spots as in the Sun. The rotation of Kepler-17 is likely to be significantly affected by the tides raised by its massive close-by planet. We confirm the reliability of maximum-entropy spot models to map starspots in young active stars and characterize the activity and differential rotation of this young Sun-like planetary host.
57 - A. Valio , R. Estrela , Y. Netto 2017
Magnetic activity on stars manifests itself in the form of dark spots on the stellar surface, that cause modulation of a few percent in the light curve of the star as it rotates. When a planet eclipses its host star, it might cross in front of one of these spots creating a bump in the transit light curve. By modelling these spot signatures, it is possible to determine the physical properties of the spots such as size, temperature, and location. In turn, the monitoring of the spots longitude provides estimates of the stellar rotation and differential rotation. This technique was applied to the star Kepler-17, a solar--type star orbited by a hot Jupiter. The model yields the following spot characteristics: average radius of $49 pm 10$ Mm, temperatures of $5100 pm 300$ K, and surface area coverage of $6 pm 4$ %. The rotation period at the transit latitude, $-5^circ$, occulted by the planet was found to be $11.92 pm 0.05$ d, slightly smaller than the out--of--transit average period of $12.4 pm 0.1$ d. Adopting a solar like differential rotation, we estimated the differential rotation of Kepler-17 to be $DeltaOmega = 0.041 pm 0.005$ rd/d, which is close to the solar value of 0.050 rd/d, and a relative differential rotation of $DeltaOmega/Omega=8.0 pm 0.9$ %. Since Kepler-17 is much more active than our Sun, it appears that for this star larger rotation rate is more effective in the generation of magnetic fields than shear.
67 - F. Liu , D. Yong , M. Asplund 2015
Chemical abundance studies of the Sun and solar twins have demonstrated that the solar composition of refractory elements is depleted when compared to volatile elements, which could be due to the formation of terrestrial planets. In order to further examine this scenario, we conducted a line-by-line differential chemical abundance analysis of the terrestrial planet host Kepler-10 and fourteen of its stellar twins. Stellar parameters and elemental abundances of Kepler-10 and its stellar twins were obtained with very high precision using a strictly differential analysis of high quality CFHT, HET and Magellan spectra. When compared to the majority of thick disc twins, Kepler-10 shows a depletion in the refractory elements relative to the volatile elements, which could be due to the formation of terrestrial planets in the Kepler-10 system. The average abundance pattern corresponds to ~ 13 Earth masses, while the two known planets in Kepler-10 system have a combined ~ 20 Earth masses. For two of the eight thick disc twins, however, no depletion patterns are found. Although our results demonstrate that several factors (e.g., planet signature, stellar age, stellar birth location and Galactic chemical evolution) could lead to or affect abundance trends with condensation temperature, we find that the trends give further support for the planetary signature hypothesis.
143 - K. Poppenhaeger , S.J. Wolk 2014
The magnetic activity of planet-hosting stars is an important factor to estimate the atmospheric stability of close-in exoplanets and the age of their host stars. It has long been speculated that close-in exoplanets can influence the stellar activity level. However, testing for tidal or magnetic interaction effects in samples of planet-hosting stars is difficult because stellar activity hinders exoplanet detection, so that stellar samples with detected exoplanets show a bias towards low activity for small exoplanets. We aim to test if exoplanets in close orbits influence the stellar rotation and magnetic activity of their host stars, and have developed a novel approach to test for such systematic activity enhancements. We use wide (several 100 AU) binary systems in which one of the stellar components is known to have an exoplanet, while the second stellar component does not have a detected planet and therefore acts as a negative control. We use the stellar coronal X-ray emission as an observational proxy for magnetic activity, and analyze observations performed with Chandra and XMM-Newton. We find that in two systems for which strong tidal interaction can be expected the planet-hosting primary displays a much higher magnetic activity level than the planet-free secondary. In three systems for which weaker tidal interaction can be expected the activity levels of both stellar components are in agreement. Our observations indicate that the presence of Hot Jupiters may inhibit the spin-down of host stars with thick outer convective layers. Possible causes for such an effect include a transfer of angular momentum from the planetary orbit to the stellar rotation through tidal interaction, or differences during the early evolution of the system, where the host star may decouple from the protoplanetary disk early due to a gap opened by the forming Hot Jupiter.
The space experiment CoRoT has recently detected a transiting hot Jupiter in orbit around a moderately active F-type main-sequence star (CoRoT-Exo-4a). This planetary system is of particular interest because it has an orbital period of 9.202 days, the second longest one among the transiting planets known to date. We study the surface rotation and the activity of the host star during an uninterrupted sequence of optical observations of 58 days. Our approach is based on a maximum entropy spot modelling technique extensively tested by modelling the variation of the total solar irradiance. It assumes that stellar active regions consist of cool spots and bright faculae, analogous to sunspots and solar photospheric faculae, whose visibility is modulated by stellar rotation. The modelling of the light curve of CoRoT-Exo-4a reveals three main active longitudes with lifetimes between about 30 and 60 days that rotate quasi-synchronously with the orbital motion of the planet. The different rotation rates of the active longitudes are interpreted in terms of surface differential rotation and a lower limit of 0.057 pm 0.015 is derived for its relative amplitude. The enhancement of activity observed close to the subplanetary longitude suggests a magnetic star-planet interaction, although the short duration of the time series prevents us from drawing definite conclusions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا