Electrically switchable entanglement channel in van der Waals magnets


Abstract in English

Two dimensional layered van der Waals (vdW) magnets have demonstrated their potential to study both fundamental and applied physics due to their remarkable electronic properties. However, the connection of vdW magnets to spintronics as well as quantum information science is not clear. In particular, it remains elusive whether there are novel magnetic phenomena only belonging to vdW magnets, but absent in the widely studied crystalline magnets. Here we consider the quantum correlations of magnons in a layered vdW magnet and identify an entanglement channel of magnons across the magnetic layers, which can be effectively tuned and even deterministically switched on and off by both magnetic and electric means. This is a unique feature of vdW magnets in which the underlying physics is well understood in terms of the competing roles of exchange and anisotropy fields that contribute to the magnon excitation. Furthermore, we show that such a tunable entanglement channel can mediate the electrically controllable entanglement of two distant qubits, which also provides a protocol to indirectly measure the entanglement of magnons. Our findings provide a novel avenue to electrically manipulate the qubits and further open up new opportunities to utilize vdW magnets for quantum information science.

Download