Quantum measurements produce classical heat


Abstract in English

Quantum measurement is ultimately a physical process, resulting from an interaction between the measured system and a measurement apparatus. Considering the physical process of measurement within a thermodynamic context naturally raises the following question: how can the work and heat resulting from the measurement process be interpreted? In the present manuscript, we model the measurement process for an arbitrary discrete observable as a measurement scheme. Here, the system to be measured is first unitarily coupled with a measurement apparatus, and subsequently the apparatus is measured by a pointer observable, thus producing a definite measurement outcome. The work can therefore be interpreted as the change in internal energy of the compound of system-plus-apparatus due to the unitary coupling. By the first law of thermodynamics, the heat is the subsequent change in internal energy of this compound due to the measurement of the pointer observable. However, in order for the apparatus to serve as a stable record for the measurement outcomes, the pointer observable must commute with the Hamiltonian, and its implementation must be repeatable. Given these minimal requirements, we show that the heat will necessarily be a classically fluctuating quantity.

Download