Do you want to publish a course? Click here

Enabling Replications and Contexts in Reversible Concurrent Calculus

64   0   0.0 ( 0 )
 Added by Clement Aubert
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Existing formalisms for the algebraic specification and representation of networks of reversible agents suffer some shortcomings. Despite multiple attempts, reversible declensions of the Calculus of Communicating Systems (CCS) do not offer satisfactory adaptation of notions that are usual in forward-only process algebras, such as replication or context. They also seem to fail to leverage possible new features stemming from reversibility, such as the capacity of distinguishing between multiple replications, based on how they replicate the memory mechanism allowing to reverse the computation. Existing formalisms disallow the hot-plugging of processes during their execution in contexts that also have a past. Finally, they assume the existence of eternally fresh keys or identifiers that, if implemented poorly, could result in unnecessary bottlenecks and look-ups involving all the threads. In this paper, we begin investigating those issues, by first designing a process algebra endowed with a mechanism to generate identifiers without the need to consult with the other threads. We use this calculus to recast the possible representations of non-determinism in CCS, and as a by-product establish a simple and straightforward definition of concurrency. Our reversible calculus is then proven to satisfy expected properties, and allows to lay out precisely different representations of the replication of a process with a memory. We also observe that none of the reversible bisimulations defined thus far are congruences under our notion of reversible contexts.

rate research

Read More

We give a proof-theoretic and algorithmic complexity analysis for systems introduced by Morrill to serve as the core of the CatLog categorial grammar parser. We consider two rece
76 - Stepan Kuznetsov 2017
We present a translation of the Lambek calculus with brackets and the unit constant, $mathbf{Lb}^{boldsymbol{*}}_{mathbf{1}}$, into the Lambek calculus with brackets allowing empty antecedents, but without the unit constant, $mathbf{Lb}^{boldsymbol{*}}$. Using this translation, we extend previously known results for $mathbf{Lb}^{boldsymbol{*}}$ to $mathbf{Lb}^{boldsymbol{*}}_{mathbf{1}}$: (1) languages generated by categorial grammars based on the Lambek calculus with brackets are context-free (Kanazawa 2017); (2) the polynomial-time algorithm for deciding derivability of bounded depth sequents (Kanovich et al. 2017).
Message-passing based concurrent languages are widely used in developing large distributed and coordination systems. This paper presents the buffered $pi$-calculus --- a variant of the $pi$-calculus where channel names are classified into buffered and unbuffered: communication along buffered channels is asynchronous, and remains synchronous along unbuffered channels. We show that the buffered $pi$-calculus can be fully simulated in the polyadic $pi$-calculus with respect to strong bisimulation. In contrast to the $pi$-calculus which is hard to use in practice, the new language enables easy and clear modeling of practical concurrent languages. We encode two real-world concurrent languages in the buffered $pi$-calculus: the (core) Go language and the (Core) Erlang. Both encodings are fully abstract with respect to weak bisimulations.
79 - Yann Hamdaoui 2021
In this paper, we show how to interpret a language featuring concurrency, references and replication into proof nets, which correspond to a fragment of differential linear logic. We prove a simulation and adequacy theorem. A key element in our translation are routing areas, a family of nets used to implement communication primitives which we define and study in detail.
In this paper we introduce a typed, concurrent $lambda$-calculus with references featuring explicit substitutions for variables and references. Alongside usual safety properties, we recover strong normalization. The proof is based on a reducibility technique and an original interactive property reminiscent of the Game Semantics approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا