Do you want to publish a course? Click here

A thermodynamic framework for unified continuum models for the healing of damaged soft biological tissue

106   0   0.0 ( 0 )
 Added by Di Zuo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

When they are damaged or injured, soft biological tissues are able to self-repair and heal. Mechanics is critical during the healing process, as the damaged extracellular matrix (ECM) tends to be replaced with a new undamaged ECM supporting homeostatic stresses. Computational modeling has been commonly used to simulate the healing process. However, there is a pressing need to have a unified thermodynamics theory for healing. From the viewpoint of continuum damage mechanics, some key parameters related to healing processes, for instance, the volume fraction of newly grown soft tissue and the growth deformation, can be regarded as internal variables and have related evolution equations. This paper is aiming to establish this unified framework inspired by thermodynamics for continuum damage models for the healing of soft biological tissues. The significant advantage of the proposed model is that no textit{ad hoc} equations are required for describing the healing process. Therefore, this new model is more concise and offers a universal approach to simulate the healing process. Three numerical examples are provided to demonstrate the effectiveness of the proposed model, which is in good agreement with the existing works, including an application for balloon angioplasty in an arteriosclerotic artery with a fiber cap.



rate research

Read More

55 - Yiqian He , Di Zuo , Klaus Hackl 2019
Healing of soft biological tissue is the process of self-recovering or self-repairing the injured or damaged extracellular matrix (ECM). Healing is assumed to be stress-driven, with the objective of returning to a homeostatic stress metrics in the tissue after replacing the damaged ECM with new undamaged one. However, based on the existence of intrinsic length-scales in soft tissues, it is thought that computational models of healing should be non-local. In the present study, we introduce for the first time two gradient-enhanced con-stitutive healing models for soft tissues including non-local variables. The first model combines a continuum damage model with a temporally homogenized growth model, where the growth direction is determined according to local principal stress directions. The second one is based on a gradient-enhanced healing model with continuously recoverable damage variable. Both models are implemented in the finite-element package Abaqus by means of a user sub-routine UEL. Three two-dimensional situations simulating the healing process of soft tissues are modeled numerically with both models, and their application for simulation of balloon angioplasty is provided by illustrating the change of damage field and geometry in the media layer throughout the healing process.
104 - Erhan Bayraktar , Bo Yang 2008
We propose a model which can be jointly calibrated to the corporate bond term structure and equity option volatility surface of the same company. Our purpose is to obtain explicit bond and equity option pricing formulas that can be calibrated to find a risk neutral model that matches a set of observed market prices. This risk neutral model can then be used to price more exotic, illiquid or over-the-counter derivatives. We observe that the model implied credit default swap (CDS) spread matches the market CDS spread and that our model produces a very desirable CDS spread term structure. This is observation is worth noticing since without calibrating any parameter to the CDS spread data, it is matched by the CDS spread that our model generates using the available information from the equity options and corporate bond markets. We also observe that our model matches the equity option implied volatility surface well since we properly account for the default risk premium in the implied volatility surface. We demonstrate the importance of accounting for the default risk and stochastic interest rate in equity option pricing by comparing our results to Fouque, Papanicolaou, Sircar and Solna (2003), which only accounts for stochastic volatility.
A to-date unsolved and highly limiting safety concern for Ultra High-Field (UHF) magnetic resonance imaging (MRI) is the deposition of radiofrequency (RF) power in the body, quantified by the specific absorption rate (SAR), leading to dangerous tissue heating/damage in the form of local SAR hotspots that cannot currently be measured/monitored, thereby severely limiting the applicability of the technology for clinical practice and in regulatory approval. The goal of this study has been to show proof of concept of an artificial intelligence (AI) based exam-integrated real-time MRI safety prediction software (MRSaiFE) facilitating the safe generation of 3T and 7T images by means of accurate local SAR-monitoring at sub-W/kg levels. We trained the software with a small database of image as a feasibility study and achieved successful proof of concept for both field strengths. SAR patterns were predicted with a residual root mean squared error (RSME) of <11% along with a structural similarity (SSIM) level of >84% for both field strengths (3T and 7T).
The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influence of the pericardium is essential for predictive mechanical simulations of the heart. However, there is no consensus on physiologically correct and computationally tractable pericardial boundary conditions. Here we propose to model the pericardial influence as a parallel spring and dashpot acting in normal direction to the epicardium. Using a four-chamber geometry, we compare a model with pericardial boundary conditions to a model with fixated apex. The influence of pericardial stiffness is demonstrated in a parametric study. Comparing simulation results to measurements from cine magnetic resonance imaging reveals that adding pericardial boundary conditions yields a better approximation with respect to atrioventricular plane displacement, atrial filling, and overall spatial approximation error. We demonstrate that this simple model of pericardial-myocardial interaction can correctly predict the pumping mechanisms of the heart as previously assessed in clinical studies. Utilizing a pericardial model can not only provide much more realistic cardiac mechanics simulations but also allows new insights into pericardial-myocardial interaction which cannot be assessed in clinical measurements yet.
Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا