Do you want to publish a course? Click here

Capsule Network is Not More Robust than Convolutional Network

55   0   0.0 ( 0 )
 Added by Jindong Gu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Capsule Network is widely believed to be more robust than Convolutional Networks. However, there are no comprehensive comparisons between these two networks, and it is also unknown which components in the CapsNet affect its robustness. In this paper, we first carefully examine the special designs in CapsNet that differ from that of a ConvNet commonly used for image classification. The examination reveals five major new/different components in CapsNet: a transformation process, a dynamic routing layer, a squashing function, a marginal loss other than cross-entropy loss, and an additional class-conditional reconstruction loss for regularization. Along with these major differences, we conduct comprehensive ablation studies on three kinds of robustness, including affine transformation, overlapping digits, and semantic representation. The study reveals that some designs, which are thought critical to CapsNet, actually can harm its robustness, i.e., the dynamic routing layer and the transformation process, while others are beneficial for the robustness. Based on these findings, we propose enhanced ConvNets simply by introducing the essential components behind the CapsNets success. The proposed simple ConvNets can achieve better robustness than the CapsNet.

rate research

Read More

29 August 2018: Artificial intelligence nails predictions of earthquake aftershocks. This Nature News headline is based on the results of DeVries et al. (2018) who forecasted the spatial distribution of aftershocks using Deep Learning (DL) and static stress feature engineering. Using receiver operating characteristic (ROC) curves and the area under the curve (AUC) metric, the authors found that a deep neural network (DNN) yields AUC = 0.85 compared to AUC = 0.58 for classical Coulomb stress. They further showed that this result was physically interpretable, with various stress metrics (e.g. sum of absolute stress components, maximum shear stress, von Mises yield criterion) explaining most of the DNN result. We here clarify that AUC c. 0.85 had already been obtained using ROC curves for the same scalar metrics and by the same authors in 2017. This suggests that DL - in fact - does not improve prediction compared to simpler baseline models. We reformulate the 2017 results in probabilistic terms using logistic regression (i.e., one neural network node) and obtain AUC = 0.85 using 2 free parameters versus the 13,451 parameters used by DeVries et al. (2018). We further show that measured distance and mainshock average slip can be used instead of stress, yielding an improved AUC = 0.86, again with a simple logistic regression. This demonstrates that the proposed DNN so far does not provide any new insight (predictive or inferential) in this domain.
Pedestrian detection methods have been significantly improved with the development of deep convolutional neural networks. Nevertheless, robustly detecting pedestrians with a large variant on sizes and with occlusions remains a challenging problem. In this paper, we propose a gated multi-layer convolutional feature extraction method which can adaptively generate discriminative features for candidate pedestrian regions. The proposed gated feature extraction framework consists of squeeze units, gate units and a concatenation layer which perform feature dimension squeezing, feature elements manipulation and convolutional features combination from multiple CNN layers, respectively. We proposed two different gate models which can manipulate the regional feature maps in a channel-wise selection manner and a spatial-wise selection manner, respectively. Experiments on the challenging CityPersons dataset demonstrate the effectiveness of the proposed method, especially on detecting those small-size and occluded pedestrians.
143 - Jinyu Yang , Peilin Zhao , Yu Rong 2020
Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.
Recent efforts have been made on domestic activities classification from audio recordings, especially the works submitted to the challenge of DCASE (Detection and Classification of Acoustic Scenes and Events) since 2018. In contrast, few studies were done on domestic activities clustering, which is a newly emerging problem. Domestic activities clustering from audio recordings aims at merging audio clips which belong to the same class of domestic activity into a single cluster. Domestic activities clustering is an effective way for unsupervised estimation of daily activities performed in home environment. In this study, we propose a method for domestic activities clustering using a convolutional capsule autoencoder network (CCAN). In the method, the deep embeddings are learned by the autoencoder in the CCAN, while the deep embeddings which belong to the same class of domestic activities are merged into a single cluster by a clustering layer in the CCAN. Evaluated on a public dataset adopted in DCASE-2018 Task 5, the results show that the proposed method outperforms state-of-the-art methods in terms of the metrics of clustering accuracy and normalized mutual information.
Recently, studies of visual question answering have explored various architectures of end-to-end networks and achieved promising results on both natural and synthetic datasets, which require explicitly compositional reasoning. However, it has been argued that these black-box approaches lack interpretability of results, and thus cannot perform well on generalization tasks due to overfitting the dataset bias. In this work, we aim to combine the benefits of both sides and overcome their limitations to achieve an end-to-end interpretable structural reasoning for general images without the requirement of layout annotations. Inspired by the property of a capsule network that can carve a tree structure inside a regular convolutional neural network (CNN), we propose a hierarchical compositional reasoning model called the Linguistically driven Graph Capsule Network, where the compositional process is guided by the linguistic parse tree. Specifically, we bind each capsule in the lowest layer to bridge the linguistic embedding of a single word in the original question with visual evidence and then route them to the same capsule if they are siblings in the parse tree. This compositional process is achieved by performing inference on a linguistically driven conditional random field (CRF) and is performed across multiple graph capsule layers, which results in a compositional reasoning process inside a CNN. Experiments on the CLEVR dataset, CLEVR compositional generation test, and FigureQA dataset demonstrate the effectiveness and composition generalization ability of our end-to-end model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا