Do you want to publish a course? Click here

Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

386   0   0.0 ( 0 )
 Added by Pengchuan Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper presents a new Vision Transformer (ViT) architecture Multi-Scale Vision Longformer, which significantly enhances the ViT of cite{dosovitskiy2020image} for encoding high-resolution images using two techniques. The first is the multi-scale model structure, which provides image encodings at multiple scales with manageable computational cost. The second is the attention mechanism of vision Longformer, which is a variant of Longformer cite{beltagy2020longformer}, originally developed for natural language processing, and achieves a linear complexity w.r.t. the number of input tokens. A comprehensive empirical study shows that the new ViT significantly outperforms several strong baselines, including the existing ViT models and their ResNet counterparts, and the Pyramid Vision Transformer from a concurrent work cite{wang2021pyramid}, on a range of vision tasks, including image classification, object detection, and segmentation. The models and source code are released at url{https://github.com/microsoft/vision-longformer}.



rate research

Read More

The recently developed vision transformer (ViT) has achieved promising results on image classification compared to convolutional neural networks. Inspired by this, in this paper, we study how to learn multi-scale feature representations in transformer models for image classification. To this end, we propose a dual-branch transformer to combine image patches (i.e., tokens in a transformer) of different sizes to produce stronger image features. Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity and these tokens are then fused purely by attention multiple times to complement each other. Furthermore, to reduce computation, we develop a simple yet effective token fusion module based on cross attention, which uses a single token for each branch as a query to exchange information with other branches. Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise. Extensive experiments demonstrate that our approach performs better than or on par with several concurrent works on vision transformer, in addition to efficient CNN models. For example, on the ImageNet1K dataset, with some architectural changes, our approach outperforms the recent DeiT by a large margin of 2% with a small to moderate increase in FLOPs and model parameters. Our source codes and models are available at url{https://github.com/IBM/CrossViT}.
Recent studies indicate that hierarchical Vision Transformer with a macro architecture of interleaved non-overlapped window-based self-attention & shifted-window operation is able to achieve state-of-the-art performance in various visual recognition tasks, and challenges the ubiquitous convolutional neural networks (CNNs) using densely slid kernels. Most follow-up works attempt to replace the shifted-window operation with other kinds of cross-window communication paradigms, while treating self-attention as the de-facto standard for window-based information aggregation. In this manuscript, we question whether self-attention is the only choice for hierarchical Vision Transformer to attain strong performance, and the effects of different kinds of cross-window communication. To this end, we replace self-attention layers with embarrassingly simple linear mapping layers, and the resulting proof-of-concept architecture termed as LinMapper can achieve very strong performance in ImageNet-1k image recognition. Moreover, we find that LinMapper is able to better leverage the pre-trained representations from image recognition and demonstrates excellent transfer learning properties on downstream dense prediction tasks such as object detection and instance segmentation. We also experiment with other alternatives to self-attention for content aggregation inside each non-overlapped window under different cross-window communication approaches, which all give similar competitive results. Our study reveals that the textbf{macro architecture} of Swin model families, other than specific aggregation layers or specific means of cross-window communication, may be more responsible for its strong performance and is the real challenger to the ubiquitous CNNs dense sliding window paradigm. Code and models will be publicly available to facilitate future research.
Transformer, first applied to the field of natural language processing, is a type of deep neural network mainly based on the self-attention mechanism. Thanks to its strong representation capabilities, researchers are looking at ways to apply transformer to computer vision tasks. In a variety of visual benchmarks, transformer-based models perform similar to or better than other types of networks such as convolutional and recurrent networks. Given its high performance and less need for vision-specific inductive bias, transformer is receiving more and more attention from the computer vision community. In this paper, we review these vision transformer models by categorizing them in different tasks and analyzing their advantages and disadvantages. The main categories we explore include the backbone network, high/mid-level vision, low-level vision, and video processing. We also include efficient transformer methods for pushing transformer into real device-based applications. Furthermore, we also take a brief look at the self-attention mechanism in computer vision, as it is the base component in transformer. Toward the end of this paper, we discuss the challenges and provide several further research directions for vision transformers.
Recently the vision transformer (ViT) architecture, where the backbone purely consists of self-attention mechanism, has achieved very promising performance in visual classification. However, the high performance of the original ViT heavily depends on pretraining using ultra large-scale datasets, and it significantly underperforms on ImageNet-1K if trained from scratch. This paper makes the efforts toward addressing this problem, by carefully considering the role of visual tokens. First, for classification head, existing ViT only exploits class token while entirely neglecting rich semantic information inherent in high-level visual tokens. Therefore, we propose a new classification paradigm, where the second-order, cross-covariance pooling of visual tokens is combined with class token for final classification. Meanwhile, a fast singular value power normalization is proposed for improving the second-order pooling. Second, the original ViT employs the naive embedding of fixed-size image patches, lacking the ability to model translation equivariance and locality. To alleviate this problem, we develop a light-weight, hierarchical module based on off-the-shelf convolutions for visual token embedding. The proposed architecture, which we call So-ViT, is thoroughly evaluated on ImageNet-1K. The results show our models, when trained from scratch, outperform the competing ViT variants, while being on par with or better than state-of-the-art CNN models. Code is available at https://github.com/jiangtaoxie/So-ViT
Relative position encoding (RPE) is important for transformer to capture sequence ordering of input tokens. General efficacy has been proven in natural language processing. However, in computer vision, its efficacy is not well studied and even remains controversial, e.g., whether relative position encoding can work equally well as absolute position? In order to clarify this, we first review existing relative position encoding methods and analyze their pros and cons when applied in vision transformers. We then propose new relative position encoding methods dedicated to 2D images, called image RPE (iRPE). Our methods consider directional relative distance modeling as well as the interactions between queries and relative position embeddings in self-attention mechanism. The proposed iRPE methods are simple and lightweight. They can be easily plugged into transformer blocks. Experiments demonstrate that solely due to the proposed encoding methods, DeiT and DETR obtain up to 1.5% (top-1 Acc) and 1.3% (mAP) stable improvements over their origin

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا