Do you want to publish a course? Click here

Scalable Coverage Path Planning of Multi-Robot Teams for Monitoring Non-Convex Areas

95   0   0.0 ( 0 )
 Added by Souma Chowdhury
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper presents a novel multi-robot coverage path planning (CPP) algorithm - aka SCoPP - that provides a time-efficient solution, with workload balanced plans for each robot in a multi-robot system, based on their initial states. This algorithm accounts for discontinuities (e.g., no-fly zones) in a specified area of interest, and provides an optimized ordered list of way-points per robot using a discrete, computationally efficient, nearest neighbor path planning algorithm. This algorithm involves five main stages, which include the transformation of the users input as a set of vertices in geographical coordinates, discretization, load-balanced partitioning, auctioning of conflict cells in a discretized space, and a path planning procedure. To evaluate the effectiveness of the primary algorithm, a multi-unmanned aerial vehicle (UAV) post-flood assessment application is considered, and the performance of the algorithm is tested on three test maps of varying sizes. Additionally, our method is compared with a state-of-the-art method created by Guasella et al. Further analyses on scalability and computational time of SCoPP are conducted. The results show that SCoPP is superior in terms of mission completion time; its computing time is found to be under 2 mins for a large map covered by a 150-robot team, thereby demonstrating its computationally scalability.



rate research

Read More

For large-scale tasks, coverage path planning (CPP) can benefit greatly from multiple robots. In this paper, we present an efficient algorithm MSTC* for multi-robot coverage path planning (mCPP) based on spiral spanning tree coverage (Spiral-STC). Our algorithm incorporates strict physical constraints like terrain traversability and material load capacity. We compare our algorithm against the state-of-the-art in mCPP for regular grid maps and real field terrains in simulation environments. The experimental results show that our method significantly outperforms existing spiral-STC based mCPP methods. Our algorithm can find a set of well-balanced workload distributions for all robots and therefore, achieve the overall minimum time to complete the coverage.
This paper considers the problem of planning trajectories for a team of sensor-equipped robots to reduce uncertainty about a dynamical process. Optimizing the trade-off between information gain and energy cost (e.g., control effort, distance travelled) is desirable but leads to a non-monotone objective function in the set of robot trajectories. Therefore, common multi-robot planning algorithms based on techniques such as coordinate descent lose their performance guarantees. Methods based on local search provide performance guarantees for optimizing a non-monotone submodular function, but require access to all robots trajectories, making it not suitable for distributed execution. This work proposes a distributed planning approach based on local search and shows how lazy/greedy methods can be adopted to reduce the computation and communication of the approach. We demonstrate the efficacy of the proposed method by coordinating robot teams composed of both ground and aerial vehicles with different sensing/control profiles and evaluate the algorithms performance in two target tracking scenarios. Compared to the naive distributed execution of local search, our approach saves up to 60% communication and 80--92% computation on average when coordinating up to 10 robots, while outperforming the coordinate descent based algorithm in achieving a desirable trade-off between sensing and energy cost.
This paper presents a human-robot trust integrated task allocation and motion planning framework for multi-robot systems (MRS) in performing a set of tasks concurrently. A set of task specifications in parallel are conjuncted with MRS to synthesize a task allocation automaton. Each transition of the task allocation automaton is associated with the total trust value of human in corresponding robots. Here, the human-robot trust model is constructed with a dynamic Bayesian network (DBN) by considering individual robot performance, safety coefficient, human cognitive workload and overall evaluation of task allocation. Hence, a task allocation path with maximum encoded human-robot trust can be searched based on the current trust value of each robot in the task allocation automaton. Symbolic motion planning (SMP) is implemented for each robot after they obtain the sequence of actions. The task allocation path can be intermittently updated with this DBN based trust model. The overall strategy is demonstrated by a simulation with 5 robots and 3 parallel subtask automata.
The problem of constrained coverage path planning involves a robot trying to cover maximum area of an environment under some constraints that appear as obstacles in the map. Out of the several coverage path planning methods, we consider augmenting the linear sweep-based coverage method to achieve minimum energy/ time optimality along with maximum area coverage. In addition, we also study the effects of variation of different parameters on the performance of the modified method.
This paper presents a deep-learning based CPP algorithm, called Coverage Path Planning Network (CPPNet). CPPNet is built using a convolutional neural network (CNN) whose input is a graph-based representation of the occupancy grid map while its output is an edge probability heat graph, where the value of each edge is the probability of belonging to the optimal TSP tour. Finally, a greedy search is used to select the final optimized tour. CPPNet is trained and comparatively evaluated against the TSP tour. It is shown that CPPNet provides near-optimal solutions while requiring significantly less computational time, thus enabling real-time coverage path planning in partially unknown and dynamic environments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا