Do you want to publish a course? Click here

A Practical Survey on Faster and Lighter Transformers

319   0   0.0 ( 0 )
 Added by Quentin Fournier
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recurrent neural networks are effective models to process sequences. However, they are unable to learn long-term dependencies because of their inherent sequential nature. As a solution, Vaswani et al. introduced the Transformer, a model solely based on the attention mechanism that is able to relate any two positions of the input sequence, hence modelling arbitrary long dependencies. The Transformer has improved the state-of-the-art across numerous sequence modelling tasks. However, its effectiveness comes at the expense of a quadratic computational and memory complexity with respect to the sequence length, hindering its adoption. Fortunately, the deep learning community has always been interested in improving the models efficiency, leading to a plethora of solutions such as parameter sharing, pruning, mixed-precision, and knowledge distillation. Recently, researchers have directly addressed the Transformers limitation by designing lower-complexity alternatives such as the Longformer, Reformer, Linformer, and Performer. However, due to the wide range of solutions, it has become challenging for the deep learning community to determine which methods to apply in practice to meet the desired trade-off between capacity, computation, and memory. This survey addresses this issue by investigating popular approaches to make the Transformer faster and lighter and by providing a comprehensive explanation of the methods strengths, limitations, and underlying assumptions.



rate research

Read More

The open-world deployment of Machine Learning (ML) algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities such as interpretability, verifiability, and performance limitations. Research explores different approaches to improve ML dependability by proposing new models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks. In this paper, we review and organize practical ML techniques that can improve the safety and dependability of ML algorithms and therefore ML-based software. Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects, and discuss research gaps as well as promising solutions.
Depth-adaptive neural networks can dynamically adjust depths according to the hardness of input words, and thus improve efficiency. The main challenge is how to measure such hardness and decide the required depths (i.e., layers) to conduct. Previous works generally build a halting unit to decide whether the computation should continue or stop at each layer. As there is no specific supervision of depth selection, the halting unit may be under-optimized and inaccurate, which results in suboptimal and unstable performance when modeling sentences. In this paper, we get rid of the halting unit and estimate the required depths in advance, which yields a faster depth-adaptive model. Specifically, two approaches are proposed to explicitly measure the hardness of input words and estimate corresponding adaptive depth, namely 1) mutual information (MI) based estimation and 2) reconstruction loss based estimation. We conduct experiments on the text classification task with 24 datasets in various sizes and domains. Results confirm that our approaches can speed up the vanilla Transformer (up to 7x) while preserving high accuracy. Moreover, efficiency and robustness are significantly improved when compared with other depth-adaptive approaches.
To ensure global food security and the overall profit of stakeholders, the importance of correctly detecting and classifying plant diseases is paramount. In this connection, the emergence of deep learning-based image classification has introduced a substantial number of solutions. However, the applicability of these solutions in low-end devices requires fast, accurate, and computationally inexpensive systems. This work proposes a lightweight transfer learning-based approach for detecting diseases from tomato leaves. It utilizes an effective preprocessing method to enhance the leaf images with illumination correction for improved classification. Our system extracts features using a combined model consisting of a pretrained MobileNetV2 architecture and a classifier network for effective prediction. Traditional augmentation approaches are replaced by runtime augmentation to avoid data leakage and address the class imbalance issue. Evaluation on tomato leaf images from the PlantVillage dataset shows that the proposed architecture achieves 99.30% accuracy with a model size of 9.60MB and 4.87M floating-point operations, making it a suitable choice for real-life applications in low-end devices. Our codes and models will be made available upon publication.
The use of deep neural networks (DNNs) in safety-critical applications like mobile health and autonomous driving is challenging due to numerous model-inherent shortcomings. These shortcomings are diverse and range from a lack of generalization over insufficient interpretability to problems with malicious inputs. Cyber-physical systems employing DNNs are therefore likely to suffer from safety concerns. In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged. This work provides a structured and broad overview of them. We first identify categories of insufficiencies to then describe research activities aiming at their detection, quantification, or mitigation. Our paper addresses both machine learning experts and safety engineers: The former ones might profit from the broad range of machine learning topics covered and discussions on limitations of recent methods. The latter ones might gain insights into the specifics of modern ML methods. We moreover hope that our contribution fuels discussions on desiderata for ML systems and strategies on how to propel existing approaches accordingly.
Due to the advances in computing and sensing, deep learning (DL) has widely been applied in smart energy systems (SESs). These DL-based solutions have proved their potentials in improving the effectiveness and adaptiveness of the control systems. However, in recent years, increasing evidence shows that DL techniques can be manipulated by adversarial attacks with carefully-crafted perturbations. Adversarial attacks have been studied in computer vision and natural language processing. However, there is very limited work focusing on the adversarial attack deployment and mitigation in energy systems. In this regard, to better prepare the SESs against potential adversarial attacks, we propose an innovative adversarial attack model that can practically compromise dynamical controls of energy system. We also optimize the deployment of the proposed adversarial attack model by employing deep reinforcement learning (RL) techniques. In this paper, we present our first-stage work in this direction. In simulation section, we evaluate the performance of our proposed adversarial attack model using standard IEEE 9-bus system.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا