Do you want to publish a course? Click here

iLQR for Piecewise-Smooth Hybrid Dynamical Systems

57   0   0.0 ( 0 )
 Added by Nathan Kong
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Trajectory optimization is a popular strategy for planning trajectories for robotic systems. However, many robotic tasks require changing contact conditions, which is difficult due to the hybrid nature of the dynamics. The optimal sequence and timing of these modes are typically not known ahead of time. In this work, we extend the Iterative Linear Quadratic Regulator (iLQR) method to a class of piecewise smooth hybrid dynamical systems by allowing for changing hybrid modes in the forward pass, using the saltation matrix to update the gradient information in the backwards pass, and using a reference extension to account for mode mismatch. We demonstrate these changes on a variety of hybrid systems and compare the different strategies for computing the gradients.



rate research

Read More

111 - David J.W. Simpson 2019
For many physical systems the transition from a stationary solution to sustained small amplitude oscillations corresponds to a Hopf bifurcation. For systems involving impacts, thresholds, switches, or other abrupt events, however, this transition can be achieved in fundamentally different ways. This paper reviews 20 such `Hopf-like bifurcations for two-dimensional ODE systems with state-dependent switching rules. The bifurcations include boundary equilibrium bifurcations, the collision or change of stability of equilibria or folds on switching manifolds, and limit cycle creation via hysteresis or time delay. In each case a stationary solution changes stability and possibly form, and emits one limit cycle. Each bifurcation is analysed quantitatively in a general setting: we identify quantities that govern the onset, criticality, and genericity of the bifurcation, and determine scaling laws for the period and amplitude of the resulting limit cycle. Complete derivations based on asymptotic expansions of Poincare maps are provided. Many of these are new, done previously only for piecewise-linear systems. The bifurcations are collated and compared so that dynamical observations can be matched to geometric mechanisms responsible for the creation of a limit cycle. The results are illustrated with impact oscillators, relay control, automated balancing control, predator-prey systems, ocean circulation, and the McKean and Wilson-Cowan neuron models.
We introduce conservative integrators for long term integration of piecewise smooth systems with transversal dynamics and piecewise smooth conserved quantities. In essence, for a piecewise dynamical system with piecewise defined conserved quantities such that its trajectories cross transversally to its interface, we combine Mannshardts transition scheme and the Discrete Multiplier Method to obtain conservative integrators capable of preserving conserved quantities up to machine precision and accuracy order. We prove that the order of accuracy of the integrators is preserved after crossing the discontinuity in the case of codimension one number of conserved quantities. Numerical examples illustrate the preservation of accuracy order.
Many state estimation and control algorithms require knowledge of how probability distributions propagate through dynamical systems. However, despite hybrid dynamical systems becoming increasingly important in many fields, there has been little work on utilizing the knowledge of how probability distributions map through hybrid transitions. Here, we make use of a propagation law that employs the saltation matrix (a first-order update to the sensitivity equation) to create the Salted Kalman Filter (SKF), a natural extension of the Kalman Filter and Extended Kalman Filter to hybrid dynamical systems. Away from hybrid events, the SKF is a standard Kalman filter. When a hybrid event occurs, the saltation matrix plays an analogous role as that of the system dynamics, subsequently inducing a discrete modification to both the prediction and update steps. The SKF outperforms a naive variational update - the Jacobian of the reset map - by having a reduced mean squared error in state estimation, especially immediately after a hybrid transition event. Compared a hybrid particle filter, the particle filter outperforms the SKF in mean squared error only when a large number of particles are used, likely due to a more accurate accounting of the split distribution near a hybrid transition.
111 - Yanjun Pan , Qin Lin , Het Shah 2020
Constrained Iterative Linear Quadratic Regulator (CILQR), a variant of ILQR, has been recently proposed for motion planning problems of autonomous vehicles to deal with constraints such as obstacle avoidance and reference tracking. However, the previous work considers either deterministic trajectories or persistent prediction for target dynamical obstacles. The other drawback is lack of generality - it requires manual weight tuning for different scenarios. In this paper, two significant improvements are achieved. Firstly, a two-stage uncertainty-aware prediction is proposed. The short-term prediction with safety guarantee based on reachability analysis is responsible for dealing with extreme maneuvers conducted by target vehicles. The long-term prediction leveraging an adaptive least square filter preserves the long-term optimality of the planned trajectory since using reachability only for long-term prediction is too pessimistic and makes the planner over-conservative. Secondly, to allow a wider coverage over different scenarios and to avoid tedious parameter tuning case by case, this paper designs a scenario-based analytical function taking the states from the ego vehicle and the target vehicle as input, and carrying weights of a cost function as output. It allows the ego vehicle to execute multiple behaviors (such as lane-keeping and overtaking) under a single planner. We demonstrate safety, effectiveness, and real-time performance of the proposed planner in simulations.
Modeling the temporal behavior of data is of primordial importance in many scientific and engineering fields. Baseline methods assume that both the dynamic and observation equations follow linear-Gaussian models. However, there are many real-world processes that cannot be characterized by a single linear behavior. Alternatively, it is possible to consider a piecewise-linear model which, combined with a switching mechanism, is well suited when several modes of behavior are needed. Nevertheless, switching dynamical systems are intractable because of their computational complexity increases exponentially with time. In this paper, we propose a variational approximation of piecewise linear dynamical systems. We provide full details of the derivation of two variational expectation-maximization algorithms, a filter and a smoother. We show that the model parameters can be split into two sets, static and dynamic parameters, and that the former parameters can be estimated off-line together with the number of linear modes, or the number of states of the switching variable. We apply the proposed method to a visual tracking problem, namely head-pose tracking, and we thoroughly compare our algorithm with several state of the art trackers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا