Large Deviations of Kacs Conservative Particle System and Energy Non-Conserving Solutions to the Boltzmann Equation: A Counterexample to the Predicted Rate Function


Abstract in English

We consider the dynamic large deviation behaviour of Kacs collisional process for a range of initial conditions including equilibrium. We prove an upper bound with a rate function of the type which has previously been found for kinetic large deviation problems, and a matching lower bound restricted to a class of sufficiently good paths. However, we are able to show by an explicit counterexample that the predicted rate function does not extend to a global lower bound: even though the particle system almost surely conserves energy, large deviation behaviour includes solutions to the Boltzmann equation which do not conserve energy, as found by Lu and Wennberg, and these occur strictly more rarely than predicted by the proposed rate function. At the level of the particle system, this occurs because a macroscopic proportion of energy can concentrate in $mathfrak{o}(N)$ particles with probability $e^{-mathcal{O}(N)}$.

Download